* Firmino AC, Yuki VA, Moreira AG, Rezende JA (2009) Tomato yellow vein streak virus: relationship with Bemisia tabaci biotype B and host range. Scientia Agricola 66, 793-799. https://doi.org/10.1590/S0103-90162009000600011
* Thouvenel JC, Monsarrat A, Fauquet C (1982) Isolation of cowpea mild mottle virus from diseased soybeans in the Ivory Coast. Plant Disease 66(4), 336-337.
* Hansen AJ, Nylland G, McElroy FD, Stace-Smith R (1974) Origin, cause, host range and spread of cherry rasp leaf disease in North America. Phytopathology 64, 721-727.
* Allen WR, Van Schagen JG, Eveleigh ES (1982) Transmission of peach rosette mosaic virus to peach, grape, and cucumber by Longidorus diadecturus obtained from diseased orchards in Ontario. Canadian Journal of Plant Pathology 4, 16–18.
* Allen WR (1986) Effectiveness of Ontario populations of Longidorus diadecturus and L. breviannulatus as vectors of Peach rosette mosaic and Tomato blackring viruses. Canadian Journal of Plant Pathology 8, 49–53.
* Sabanadzovic S, Ingram DM, Lawrence AM (2010) First report of Tobacco ringspot virus in Joe-pye weed (Eupatorium purpureum) in Mississippi. Plant Disease 94(1), p 126.
* Fribourg CE (1977) Andean potato calico strain of tobacco ringspot virus. Phytopathology 67, 174-178.
------- TRSV-Ca.
* Salazar LF, Harrison BD (1978) Host range and properties of potato black ringspot virus. Annals of Applied Biology 90, 375-386.
------- PBRSV.
* Parrella G, Gognalons P, Gebre-Selassie K, Vovlas C, Marchoux G (2003) An update of the host range of tomato spotted wilt virus. Journal of Plant Pathology 85(4), 227-264.
------- Artificial transmission.
* Alshami AAA, Ahlawat YS, Pant RP (2003) A hitherto unreported yellow vein clearing disease of citrus in India and its viral etiology. Indian Phytopathology 56(4), 422-427.
------- inoculation studies.
* Tanaka H, Imada J (1974) Mechanical transmission of viruses of satsuma dwarf, citrus mosaic, navel infectious mottling and natsudaidai dwarf to herbaceous plants. In: Weathers LG, Cohen M (eds.) Proceedings of the 6th Conference of IOCV, Riverside, California (US), pp. 141-145.
------- Susceptible to SDV.
* Luria N, Smith E, Reingold V, Bekelman I, Lapidot M, Levin I, et al. (2017) A New Israeli Tobamovirus Isolate Infects Tomato Plants Harboring Tm-22 Resistance Genes. PLoS ONE 12(1): e0170429. https://doi.org/10.1371/journal.pone.0170429
*Ambrós S, Martínez F, Ivars P, Hernández C, de la Iglesia F & Elena SF (2017) Molecular and biological characterization of an isolate of Tomato mottle mosaic virus (ToMMV) infecting tomato and other experimental hosts in eastern Spain. European Journal of Plant Pathology 149(2), 261-268
* Sui X, Zheng Y, Li R, Padmanabhan C, Tian T, Groth-Helms D, Keinath AP, Fei Z, Wu Z, Lin KS (2017) Molecular and biological characterization of Tomato mottle mosaic virus and development of RT-PCR detection. Plant Disease 101(5), 704-711.
* Verbeek M, Dullemans AM, Van den Heuvel JF, Maris PC, Van der Vlugt RA (2008) Tomato marchitez virus, a new plant picorna-like virus from tomato related to tomato torrado virus. Archives of virology 153(1), 127-134.
------- inoculation studies.
* Larsen HJ, James D (2011) Peach mosaic virus. In Virus and Virus-Like Diseases of Pome and Stone Fruits; Hadidi A, Barba M, Candresse T & Jelkmann W, Eds; American Phytopathological Society Press, St. Paul, MN, USA; pp. 171-175.
* Fribourg CE, Jones RAC, Koenig R (1977) Host plant reaction, physical properties and serology of three isolates of Andean potato latent virus from Peru. Annals of Applied Biology 86, 373-380.
* García W, Gandarillas A (1992) Incidencia virotica en campos de tubérculo-semilla de papa en certificación y campos comerciales [Virus incidence in potato tuber-seed fields in certification and commercial fields]. Revista de Agricultura. Facultad de Ciencias Agrícolas y Pecuarias, Universidad Mayor de San Simón. Cochabamba, Bolivia 21, 29–33.
------- Col isolate was tested.
* Fribourg CE, Jones RAC, Koenig R (1977) Host plant reaction, physical properties and serology of three isolates of Andean potato latent virus from Peru. Annals of Applied Biology 86, 373-380.
* Cruces LMN (2022) Towards an integrated pest management in quinoa in traditional and new production zones of Peru. PhD thesis, Ghent University, Ghent, Belgium. 230 pp.
* FAO (2016) Guía de identificación y control de las principales plagas que afectan a la quinua en la zona andina. Organización de las Naciones Unidas para la Alimentación y la Agricultura, Santiago. 41 pp. Available from https://www.fao.org
* EPPO (2024) EPPO Technical Document No. 1091. Pest risk analysis for Chloridea virescens. EPPO, Paris. Available at https://gd.eppo.int/taxon/HELIVI/documents
------- Main host (evidence that the plant supports populations of the pest in several generations or years, i.e. true hosts, or plant mentioned as common or preferred host – see PRA for further details on the host)
* Chorbadjian RA, Ahumada MI, Urra F, Elgueta M, Gilligan TM (2021) Biogeographical patterns of herbivore arthropods associated with Chenopodium quinoa grown along the Latitudinal Gradient of Chile. Plants 10(12), 2811. doi:10.3390/plants10122811
* Cruces L, de la Peña E, De Clercq P (2020) Seasonal Phenology of the Major Insect Pests of Quinoa (Chenopodium quinoa Willd.) and Their Natural Enemies in a Traditional Zone and Two New Production Zones of Peru. Agriculture 10, 644. doi:10.3390/agriculture10120644
* Korytkowski C (1982) Contribución al conocimiento de los Agromyzidae (Diptera: Acalyptratae) en el Perú. MS Thesis, Universidad Nacional Agraria, La Molina, Lima, 237 pp.
* Rauf A, Shepard BM, Johnson MW (2000) Leafminers in vegetables, ornamental plants and weeds in Indonesia: surveys of host crops, species composition and parasitoids. International Journal of Pest Management 46, 257-266.
* Franco J, Main G (2008) Management of nematodes of Andean tuber and grain crops. In: Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes. Ciancio A, Mukerji KG (eds.). Springer, Dordrecht, Netherlands, 99-117.
* Soca-Flores MN (2021) [Population fluctuation of phytophagous insects associated with the cultivation of Quinoa (Chenopodium quinoa Willd. in La Molina, Lima.] Tesis de Maestría. Escuela de Posgrado, Universidad La Molina, Lima, Peru. (in Spanish). http://repositorio.lamolina.edu.pe/handle/20.500.12996/4743 [accessed on 22 November 2021].
* Brito R, Specht A, Gonçalves GL, Moreira GRP, Carneiro E, Santos FL, Roque-Specht VF, Mielke OHH, Casagrande MM (2019) Spodoptera marima: a new synonym of Spodoptera ornithogalli (Lepidoptera: Noctuidae), with notes on adult morphology, host plant use and genetic variation along its geographic range. Neotropical Entomology 48(3), 433-448.
* Peterson AJ, Murphy KM (2015) Quinoa cultivation for temperate North America: considerations and areas for investigation. In: Murphy K, Matanguihan J (eds.). Quinoa: Improvement and Sustainable Production. Wiley-Blackwell, 235 pp.
* Kogan M, Helm CG, Kogan J, Brewer E (1989) Distribution and economic importance of Heliothis virescens and Heliothis zea in North, Central, and South America and of their natural enemies and host plants. InProceedings of the Workshop on Biological Control of Heliothis: Increasing the Effectiveness of Natural Enemies, New Delhi, India, 11-15 November 1985 1989. New Delhi, India: Office of International Cooperation & Development, USDA.