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IDENTITY

Preferred name: Xanthomonas fragariae
Authority: Kennedy & King
Taxonomic position: Bacteria: Proteobacteria: 
Gammaproteobacteria: Lysobacterales: Lysobacteraceae
Common names:  angular leaf spot of strawberry, leaf blight of 
strawberry, vascular collapse of strawberry
view more common names online...
EPPO Categorization: A2 list
view more categorizations online...
EU Categorization: RNQP ((EU) 2019/2072 Annex IV)
EPPO Code: XANTFR

more photos...

Notes on taxonomy and nomenclature

Xanthomonas fragariae is a phenotypically and genotypically homogeneous species and clearly distinct from the 
other xanthomonads (Vauterin et al., 1995; Roberts et al., 1996 and 1998; Rademaker et al., 2000 and 2005; 
Parkinson et al., 2007; Albuquerque et al., 2011). Strains show a strong clonal relationship, although some variation 
in fatty acid, RFLP, rep-PCR and AFLP profiles, not related to geographic origin or virulence, was observed by 
Roberts et al., 1998 and Stöger et al., 2008. A deviating, virulent strain, causing crown infection was reported from 
Liaoning province in China (Li et al., 2021). Maas et al. (2000) noted some difference in virulence between strains.

X. fragariae was the first xanthomonad where the CRISPR (clustered regularly interspaced short palindromic 
repeats) locus spacer typing and MLVA (Multilocus variable number of tandem repeats – VNTR - analysis), assisted 
in determining a (micro)-evolutionary trend among isolates. Two major groups and four subgroups were 
distinguished and data suggest that the two main groups were potentially responsible for the spread of the disease 
worldwide and the relative homogeneity of the species (Gétaz et al., 2018).

A related bacterial pathogen, causing so-called bacterial leaf blight, in the early 1990s in strawberry cultivations in 
Northern Italy, was described in 2001 as Xanthomonas arboricola pv. fragariae (Janse et al. 2001). Subsequently, 
the pathogen was also found in strawberry plantlets in Türkiye (Ustun et al. 2007). Symptoms are necrotic, reddish-
brown lesions on leaves that enlarge, often with a chlorotic halo, that are not water-soaked as in infections of 
X. fragariae. Moreover, often large brown V-shaped lesions, surrounded by a chlorotic halo develop along the leaf 
margin in X. arboricola pv. fragariae infections. In the final stages leaves may completely wither and die. As 
opposed to infections of X. fragariae, no small, water-soaked lesions in early stages of the infection and no bacterial 
exudate was observed. High humidity and lower temperatures are important for infections of X. arboricola pv. 
fragariae to appear. Sometimes, however, this pathogen has been co-isolated with X. fragariae (Scortichini and 
Rossi 2003; Vandroemme et al. 2013b). Vandroemme et al. (2013b) found genetic variability within a relatively 
small collection of X. arboricola pv. fragariae strains. In an apparent failure to obtain symptoms in their artificial 
inoculations with those strains (Vandroemme et al., 2013b), they concluded, incorrectly (see below), that X. 
arboricola pv. fragariae was non-pathogenic. In some studies, other authors also failed to prove pathogenicity for 
certain strains of X. arboricola pv. fragariae (e.g. Fischer-Le Saux et al., 2015; Gétaz et al., 2020a). However, 
Ferrante & Scortichini (2018), using proper conditions during inoculation, unequivocally proved and reconfirmed 
pathogenicity using the pathovar type strain of X. arboricola pv. fragariae.

HOSTS

Fragaria x ananassa (the predominant cultivated strawberry, whose progenitors derive from hybridization between 
F. chiloensis and F. virginiana) is the main host, but its numerous cultivars vary a great deal in susceptibility 
(Desmet et al., 2009).

https://gd.eppo.int/taxon/XANTFR/
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Stöger et al. (2008) isolated X. fragariae from F. vesca (wild or European strawberry) and F. chiloensis in the field. 
F. virginiana, Dasiphora fruticosa and Potentilla glandulosa became infected only following experimental 
inoculation. Among Fragaria spp. only F. moschata (musk strawberry) was found to be resistant (Kennedy & King, 
1962a; Kennedy, 1965; Maas, 1998). Cultivated strawberries (Fragaria x ananassa) are the host of concern 
throughout the EPPO region.

Host list: Fragaria x ananassa

GEOGRAPHICAL DISTRIBUTION

X. fragariae, was first observed in 1960 in Minnesota, USA (Kennedy & King, 1962a). The pathogen is easily 
transmitted to healthy material from asymptomatic plants. It probably spread within North America and from there to 
many other countries in different continents, with (latently) infected planting material (e.g., Mazzucchi et al., 1973; 
Dye & Wilkie, 1973; McGechan & Fahy, 1976; López et al., 1985; Bultreys et al., 2000). In Australia angular leaf 
spot, after several outbreaks since 1976 (McGechan & Fahy, 1976; Gillings et al., 1998), has been reported as 
eradicated (Young et al., 2011). Eradication after some outbreaks was also reported from the United Kingdom 
(Matthews-Berry & Reed, 2009) as well as from Réunion island (FR) in the Indian Ocean (Pruvost et al., 1988). The 
disease is widespread in North America and the EPPO region, less so in other continents such as South America, 
Asia and Africa, probably related to the spread and intensity of strawberry cultivation.

EPPO Region: Austria, Belgium, Bulgaria, France (mainland), Germany, Italy (mainland, Sicilia), Jordan, 
Netherlands, Portugal (mainland), Serbia, Spain (mainland), Switzerland
Africa: Ethiopia
Asia: China (Beijing, Hebei, Liaoning, Shanghai, Tianjin, Yunnan, Zhejiang), Iran, Islamic Republic of, Jordan, 
Korea, Republic of, Taiwan
North America: Canada (Alberta, Manitoba, New Brunswick, Newfoundland, Nova Scotia, Ontario, Québec, 
Saskatchewan), Mexico, United States of America (Alabama, California, Connecticut, Florida, Indiana, Kentucky, 
Louisiana, Maryland, Massachusetts, Michigan, Minnesota, Montana, New York, North Carolina, North Dakota, 
Ohio, Oklahoma, Oregon, Pennsylvania, Texas, Virginia, Wisconsin)
South America: Argentina, Brazil (Distrito Federal, Espirito Santo, Minas Gerais, Rio Grande do Sul, Sao Paulo), 
Paraguay, Peru, Uruguay, Venezuela

BIOLOGY



Residues of infected leaves and crown infections on runners used for planting are sources of inoculum for primary 
infections (Maas, 1998). In the residues of infected leaves, in or on soil, the bacterium survives from one crop to the 
next. Survival on the leaves is much shorter, a number of weeks only, even under high humidity conditions 
(Kastelein et al., 2014) The bacterium exudes from primary lesions, and bacterial cells are spread in the form of 
aerosols, caused by rain and sprinkler irrigation (Hildebrand et al., 2005; Kim et al., 2016; van der Wolf et al., 
2018), that are transported by wind to healthy leaves. Penetration occurs through the stomata. Infections of the 
crowns occur through local wounds or downwards from the affected leaves. During the growing season several 
cycles of secondary infections may occur. The bacterium may attack flowers, and occasionally fruits. The early 
stages of infection and pathogenesis were studied using electron microscopy by Allan-Wojtas et al. (2010). From 
crown infection pockets, the bacterium causes lesions along the veins at the base of the youngest leaves, which 
develop in the apical crown region (Kennedy & King, 1962b; Hildebrand et al., 1967; Maas, 1998 and 2004). In 
latent infections X. fragariae can move endophytically and systemically into the roots, crowns and runners. 
Occasionally this latent infection may lead to water-soaked areas at the base of newly emerged leaves with 
subsequent sudden plant collapse and death (Stefani et al., 1989; Milholland et al., 1996; Mahuku & Goodwin, 
1997). This second type of symptoms, called ‘vascular collapse of strawberry’, lead Hildebrand et al. (1967) to the 
conclusion that the disease would better be called bacterial blight of strawberry than just angular leaf spot.

Milholland et al. (1996) were able to isolate the pathogen from 100% of petioles 2 weeks after artificial leaf 
inoculation and from up to 83% of crown-tissue samples, 12 weeks after inoculation. They also detected the bacteria 
in xylem vessels using IF. Petiole tissues harboring bacteria were determined to be the main source of initial 
inoculum in strawberry fields (Wang et al., 2018). Survival in soil under European conditions, in cases where crop 
residues were incorporated into the soil with or without haulm killing, appeared to be very limited (Kastelein et al., 
2009). Remarkably, Kong (2010) found that X. fragariae could still be isolated after almost 21 years of storage from 
air-dried leaf spots stored in tape-sealed Petri dishes at 5°C, and that these isolates were still virulent, causing typical 
symptoms after inoculation in strawberry plants.

During epidemics, when environmental conditions favor exudation and spread, the bacterium may cause systemic 
infections associated with crown pockets. These infections may also arise under damp nursery conditions. The 
conditions favoring infection are moderate daytime temperatures (about 20-23°C), low night-time temperatures and 
high humidities, up to 100% (Maas, 1998; Kastelein et al., 2014). During the nursery stage in open fields in South 
Korea (from May to August), the pathogen was detected by PCR in mother plants, but not in soil or irrigation water. 
During the cultivation period, from September to March, the pathogen was detected in mother plants and their 
progeny, and also in soil, but not in water (Kim et al., 2016). Infection of propagation material mainly occurs when 
strawberry plants are grown outdoors, when grown in glasshouses, screenhouses or polytunnels, disease incidence is 
much lower (Van der Gaag et al., 2013).

In strawberry cultivation the (latently) infected planting material is the primary infection source, but contamination is 
also possible via contaminated machinery, tools, field workers and animals. Natural distribution of the bacterium in 
the field or glasshouse is (usually) limited to a few metres, due to splashing rain, wind or irrigation water, where 
(dried) exudates on leaves are also involved (Van der Gaag et al., 2013; Kastelein et al., 2009 and 2018; van der 
Wolf et al., 2017). The pathogen can survive for up to 2 weeks on metal and wood (Vermunt & Van Beuningen, 
2008). Survival of X. fragariae was determined by Turechek et al. (2023) on different materials used in nurseries 
(corrugated cardboard, cotton balls, cotton cloth, strawberry leaf, sheet metal, plastic, rubber, wood, glass, and latex 
glove) stored at c. 20°C or -4°C (the latter temperature being in use for dormant plants in nurseries) for up to 365 
days after inoculation (DAI), using viability real-time PCR and a bioassay. X. fragariae could survive on all 
materials at -4°C up to 7 DAI, the longest survival was on cardboard (270 DAI). At 20 °C the bacterium survived in 
small numbers up to 14 DAI on cardboard, cotton and strawberry leaf tissue.

Cooper (2007) found a non-pathogenic Pseudomonas species often associated with X. fragariae and aggravating the 
symptoms to a certain extent. When X. fragariae is detected in rhizomes (in which bacterial exudates are sometimes 
found when cut transversely), this is often accompanied by other infections by Verticillium and/or Phytophthora spp. 
(Van der Gaag et al., 2013).

Metabolic changes due to infections with X. fragariae and their underlying genetic basis, using ultra-performance 
liquid chromatography (UPLC)- quadrupole-time-of-flight (QTOF) mass-spectrometry and transcriptome analysis 
and gene expression of both pathogen and host, with high-throughput mRNA sequencing, were determined by Kim 
et al



. (2016) and Gétaz et al. (2020b).

The whole genome sequences of two strains of X. fragariae (FaP21 and FaP29) isolated in 2011 from symptomatic 
strawberry leaf tissue in Siskiyou County, California, USA are available (Henry & Leveau, 2016). Other genome 
sequences were determined by Gétaz et al., 2017b.

Pathogenicity of X. fragariae is mainly based a hrp gene cluster coding for structural elements of the type III 
secretion system (T3SS), T3SS effector s(T3E) and an essential part of the gum cluster coding for xanthan 
extracellular polysaccharide synthesis (Vandroemme et al., 2013b). Furthermore, pathogenicity is also linked to a 
type IV (T4SS) and an xps-coded type II secretion system (T2SS) and the production of various toxins, including 
hemolytic and cytolytic RTX-toxins (Gétaz et al., 2020b; Pu?awska et al., 2020).

DETECTION AND IDENTIFICATION

Symptoms

On leaves, 1-4 mm, angular, shiny, water-soaked spots appear surrounded by the smallest veins. In the early stage, 
leafspots are only visible on the lower surface and appear translucent against the light. They enlarge, coalesce and 
after about 2 weeks are also visible on the upper leaf surface as water-soaked, angular spots, which subsequently 
become reddish-brown. They have a shiny appearance and are usually covered by bacterial exudate, which when dry, 
turns brown and appears as gum-like scales. Spots may coalesce along the primary and secondary veins. The dead 
tissues tear and break off, and the diseased leaf may show a ragged appearance.

In the most severe cases crown infection pockets may be seen inside after dissection. They appear as localized, water-
soaked zones, frequently confined to one side of the crown, where bacterial exudate may also be formed.

For more information, see Kennedy & King (1962b), Hildebrand et al. (1967), Mazzucchi et al. (1973), 
Panagopoulos et al. (1978), Maas (1998) & Van der Gaag et al. (2013).

A blossom blight of strawberry caused by X. fragariae with blighting of entire flowers, or in less severe cases, water-
soaked lesions on the lower surface of the calyx and pedicel of seemingly healthy green and ripe fruits was described 
by Gubler et al. (2007) from California, USA. Symptoms on calyxes and pedicels may be confused with those 
caused by Erwinia pyrifoliae, although in the latter case there is a more general blackening of the tissues, in some 
cases with bacterial slime formation. Fruits are usually infected, blackened and often malformed (Wenneker & 
Bergsma-Vlami, 2015).

Symptoms of angular leaf spot caused by X. fragariaemay be confused with those caused by fungi, such as 
Ramularia grevillea (formerly Mycosphaerella fragariae) causing common spot of strawberry and Diplocarpon 
fragariae, causing leaf scorch, as well as with the symptoms caused by X. arboricola pv. fragariae (see Notes on 
taxonomy and nomenclature and Janse et al., 2001). Definitive diagnosis should always be obtained through 
laboratory analysis (see below and EPPO, 2023).

Morphology

X. fragariae is an aerobic, Gram-negative, non-spore-forming, non-capsulated rod; size averaging 0.4 x 1.3 µm. Most 
cells are non-motile, but some have a single polar flagellum. On a suitable medium such as Wilbrink’s medium 
colonies are circular, entire, convex, glistening, translucent to pale-yellow after 3-5 days incubation at 20 to 24°C 
(Bradbury, 1977; Roberts et al., 1997; EPPO, 2023).

Detection and inspection methods

Rapid screening tests such as ELISA or IF and PCR/Nested PCR or a detached leaf assay (Civerolo et al., 1997a and 
b; Randhawa & Civerolo, 2017) can be used for presumptive diagnosis of X. fragariae, as the bacterium is quite 
difficult to isolate, and its colonies are easily overgrown by those of secondary organisms. Use of purified agar 
(Difco) is recommended in all media because impurities from other commercial agars can inhibit the growth of 
X. fragariae



(Rowhani et al., 1994; EPPO, 2023). The pure culture is distinguishable on agar media from other phytopathogenic 
xanthomonads, including X. a. pv. fragariae (EPPO, 2023).

Stöger & Ruppitsch (2004) developed a sensitive, PCR kit called REDExtract-N-Ampk Plant PCR-Kit for the 
detection of X. fragariae in (a)symptomatic plant material. Several sensitive (nested/multiplexed) PCR detection 
tests, also in combination with immune-capture, targeting different loci in the X. fragariae genome, have been 
developed (Roberts et al., 1996; Pooler et al., 1996; Hartung & Pooler, 1997; Zimmermann et al., 2004; Weller et al.
, 2007; Vandroemme et al., 2008; Turechek et al., 2008; Vermunt and van Beuningen, 2008). These tests can be used 
to confirm the presence of X. fragariae in symptomatic plant material, and can be used for detection of (latent) 
infections in (symptomless) plants (Mahuku and Goodwin, 1997; Zimmerman et al., 2004, EPPO, 2023; IPPC 2016). 
A real-time PCR was developed by Cubero et al. (2009), and another one, specifically tested for detection in crown 
tissue, by Turechek et al. (2008). A loop-mediated isothermal amplification assay (LAMP) and sample preparation 
procedure for detection was developed by Wang & Turechek (2016) and Gétaz et al. (2017a).

Rep-PCR has been used for identification of field isolates of X. fragariae (Opgenorth et al., 1996) as well as MALDI-
TOF mass spectrometry (Vandroemme et al., 2013b).

Both PEMAX-PCR (a mix of nucleic acid intercalating dyes propidium monazide - PMA and ethidium-monazide - 
EMA) and PMA-real-time PCR have been recently developed for the detection of viable cells of X. fragariae in 
strawberry. This so-called viability PCR (vPCR) could be useful in testing of planting material entering a country 
(Wang & Turechek, 2020; Immanuel et al., 2020).

An efficient spray-infiltration method of inoculation was published by Hazel et al. (1980), but also see EPPO (2023).

Details about presumptive diagnosis with rapid tests, detection and identification methods (including methods for 
extraction of bacterial cells and DNA), biochemical, serological and molecular and pathogenicity tests (using 
inoculation of bean plantlets or hilum injury/seed inoculation) for latent and symptomatic infected material, flow 
chart, culture media, chemicals and reference material) are provided in the EPPO Standard PM 7/65 (2) (EPPO, 
2023) on X. fragariae and IPPC Diagnostic protocol DP 14 (IPPC, 2016).

PATHWAYS FOR MOVEMENT

Locally, X. fragariae can be spread by splashing water or via aerosols generated by precipitation, irrigation, or 
mowing (Van der Wolf et al., 2017; 2018). The bacterium can also be spread via contact with contaminated 
machinery, clothes and by animals (Maas, 2004). For example, the spread of X. fragariae in a strawberry field by 
mowing and runner cutting machinery was studied in the Netherlands. The blades of a rotary mower became heavily 
contaminated after trimming leaves of symptomatic plants and could spread the bacterium to healthy plants up to a 
distance of 4 m (Kastelein et al., 2018).

Within a field crop, X. fragariae is not free-living in the soil, but it can overwinter in the soil in association with 
previously infected plant material (Maas, 1998).

Over short and long distances, the movement of infected plants for planting is the main pathway. Commercial 
strawberry runners used for planting may spread the bacterium as they may still bear old, whole or torn, infected 
leaves or have crown infection pockets. Moreover, almost invisible fragments of infected leaves may be hidden in 
the apical crown region or between the roots (Kennedy & King, 1962a). Viable cells of X. fragariae could be 
detected in fruits produced for the fresh market (Immanuel et al., 2020), but fruits are considered as a minor pathway.

PEST SIGNIFICANCE

Economic impact

Like in other strawberry leaf spot and blight diseases caused by e.g., Phomopsis obscurans and X. arboricola pv. 
arboricola and leaf blotch caused by Zythia fragariae, bacterial blight causes a certain reduction in yield, but 
generally, the disease is not destructive. However, heavy losses may occur under very wet weather conditions or 



frequent overhead sprinkler irrigation. The highest losses (up to 75% fruit loss) were reported by Epstein (1966) in 
the USA, but in most cases losses are much lower, since only leaves and calices are infected, leading to a moderate 
reduction of photosynthesis and disfigured calices which very occasionally rendered fruits unmarketable (Legard et al
., 2003). Earlier substantial losses reported by Mazzucchi et al. (1973), López et al. (1985) and Bosshard & Schwind 
(1997) were not observed in later years, although the disease is widespread in Western Europe. In the USA, yield 
losses up to 25% were reported during some years in the 1990s, but the biggest impact was due to import restrictions 
from Mexico and the European Union for planting material (Roberts et al., 1997; Van der Gaag et al., 2013). In 
South Korea, the implementation of a strict control programme for several years reduced the disease incidence from 
45% to 5% (Yoon et al., 2016).

Control

The use of healthy planting material and avoidance of conditions favouring the disease (e.g. high humidity, high 
nitrogen fertilizing) are the main control methods. Crop operations, using machinery proved important for disease 
and pathogen spread in the field (Gigot et al., 2017; Kastelein et al., 2018) and should be taken into account when 
considering control measures. Other cultural measures include the use of drip irrigation and irrigation early in the 
morning to obtain faster drying of crop, as well as monitoring and removal of diseased plants. Treatments with 
copper-containing products have shown some effectiveness, but have to be applied very intensively, with a risk of 
phytotoxicity (Kennedy-Fisher, 1997).

Mixtures of copper compounds and the fungicide mancozeb were found to be effective against X. fragariae, but they 
may lead to phytotoxicity (Roberts et al., 1997). Alternatives to copper such as acibenzolar-S-methyl, and 
kasugamycin showed lower disease severity than untreated controls (Cooper, 2007). An organic acid-based 
biopesticide (OAB, containing 10.73 g L-1 of citric acid and 21.37 g L-1 of lactic acid) could reduce disease 
incidence by up to 50% when 7 sprays were applied, in trials under natural field infection conditions, in Canada, 
where the product is registered (Dubois et al., 2017). Oxidate (hydrogen dioxide 27%) was registered in the USA for 
control of angular leaf spot and has been used with varying success (Anco & Ellis, 2011). Braun & Hildebrand 
(2013) found that foliar applications of various antioxidants, such as ?-tocopherol and mannitol, along with the plant 
activators acetylsalicylic acid and acibenzolar-S-methyl, and the fungicide fosetyl-Al, substantially reduced disease 
incidence. Kim et al. (2016) used oxolinic acid, with an 87% control during the nursery period, and the antibiotic 
validamycin-A, with a 95% control during the cultivation stage (control effect 95%). A post-harvest propylene oxide 
fumigation also had a control effect. Amino-thiazidol and zinc thiazidol alone or in low-rate combination with 
kasugamycin or copper compounds reduced disease incidence when applied pre-harvest to more than 90% (Haack et 
al., 2019).

Henry et al. (2016) observed a strong reduction in symptom formation when X. fragariae was co-inoculated with 
tannic acid (a chelating agent of iron) onto strawberry plants, suggesting a kind of nutritional immunity and 
possibilities for control by restriction to iron access on or in the plant.

Dipping plants in a solution of 10% chlorine bleach and use of UV-C radiation and a concomitant removal or 
trimming remnant leaf and petiole tissue from nursery-trimmed plants, reduced disease significantly but not 
completely in planting stock (Turechek et al., 2013).

Heat treatment was successfully applied to nursery stock where bacterial populations were exposed to 44°C for 4 h 
or 48°C for 2 h. These treatments minimally affected vegetative growth of plants bagged dry or wet (Turechek & 
Peres, 2009).

Hildebrand et al. (2005) found the cultivar Tristar as well as two clones, US 4808 and US 4809, that were derived 
from F. virginiana, to be much less susceptible than most of the cultivars tested. The latter two were released for 
resistance breeding. An important locus determining the resistance of the two wild genotypes mentioned above was 
found (designated FaRXf1) which could play a role in marker-assisted selection in order to develop resistant cultivars 
(Roach et al., 2016). Maas et al. (2002) used the above mentioned octoploid highly resistant clones US 4808 and US 
4809, see also Jamieson et al. (2013). Recent breeding experiments with these genotypes showed that their resistance 
is based on three or four unlinked loci (Lewers et al., 2003), leading to only limited inheritance.

A high level of plant host resistance to angular leafspot disease has been found in certain Fragaria species, such as 
F. moschata (2n=6x) and F. vesca (2n=2x) and occasionally in clones of F. virginiana (2n=8x) but not in octoploid 



cultivated strawberries and in F. x ananassa cv. Tristar (Roberts et al., 1997; Maas et al., 2000, 2002; Hartung et al., 
2003; Xue et al., 2005; Hildebrand et al., 2005; Cooper, 2007; Pérez-Jiménez et al., 2012; Jamieson et al., 2013). In 
addition to F. moschata some accessions of F. pentaphylla, a tetraploid species of wild strawberry native to China 
showed resistance towards X. fragariae (Xue et al., 2005).

The old German strawberry variety Sieger was found to be resistant against two strains of X. fragariae in Spain and 
could also be useful in breeding programs (Pérez-Jiménez et al., 2012). To obtain more understanding and potential 
contributors to breeding for resistance Bestfleisch et al. (2015) screened 145 Fragaria genotypes of which 6, with 
variable polyploidy showed moderate resistance, belonging to Fragaria vesca f. alba, F. nilgerrensis ‘Yunnan’, F. 
vesca ‘Illa Martin’ and F. moschata ‘Bauwens’.

Phytosanitary risk

The main pathway for (international) spread of X. fragariae is via asymptomatic plants for planting with latent 
infections. Infected planting material is therefore the main risk for uncontaminated areas. However, over the years it 
has been observed that actual losses due to bacterial angular leaf spot remain generally low to very low and that 
current cultural methods, in combination with some preventive sprays of bactericidal compounds, can sufficiently 
limit its importance (Van der Gaag et al., 2013). Based on this information the European Union changed the status of 
X. fragariae from a quarantine pest (Annex IIA2) to a regulated non-quarantine pest (RNQP) (EU, 2019).

PHYTOSANITARY MEASURES

It can be recommended that strawberry planting material from infested countries should be derived from mother 
plants kept free from X. fragariae as part of a certification scheme (EPPO, 2008a), and that the place of production 
should have been found free from the disease during the last five growing seasons. In addition, visual inspections 
during the dormant period can be useful. Inspectors should look for typical angular spots on old leaves or on their 
remains still attached to the runners. Samples from lots kept in cold storage must be inspected immediately after the 
runners are taken out and thawed. The spots can no longer be seen after only 1 day at room temperature.

Visual inspection and sampling methods for strawberry planting material (at import) are described in the commodity 
specific EPPO phytosanitary procedure PM 3/73 (1) (EPPO 2008b) and for places of production in PM 3/83(1) 
(EPPO, 2017). Certification for pathogen-tested material, including tests for X. fragariae are laid down in EPPO PM 
4/11 (2) (EPPO, 2008a). Detailed risk management measures against X. fragariae have also been proposed on the 
use of non-certified and certified strawberry planting material during the RNQP project (EPPO, 2018). Detection of 
viable cells of X. fragariae using viability PCR (vPCR) has been suggested as a method that could be useful in post-
entry quarantine and for detection in fresh fruits in New Zealand (Immanuel et al., 2020).
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