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IDENTITY

Preferred name: Pospiviroid impedichrysanthemi
Taxonomic position: Viruses and viroids: Viroids: Pospiviroidae
Other scientific names: CSVd, Chrysanthemum stunt mottle virus, 
Chrysanthemum stunt pospiviroid, Chrysanthemum stunt viroid
Common names:  measles of chrysanthemum, stunt of 
chrysanthemum
view more common names online...
EPPO Categorization: A2 list
view more categorizations online...
EU Categorization: RNQP (Annex IV)
EPPO Code: CSVD00

more photos...

Notes on taxonomy and nomenclature

Ratification by the International Committee on Taxonomy of Viruses (ICTV) of the new species name 
Pospiviroid impedichrysanthemi is pending (ICTV website, proposal n. 2023.032P) and expected to be adopted 
early in 2024.

HOSTS

The major natural host of CSVd is the florists' chrysanthemum (Chrysanthemum x morifolium). In addition, several 
ornamental plants mainly belonging to the family Asteraceae, a few plant species of the family Solanaceae, including 
potato (S. tuberosum, Matsushita et al., 2019a; 2021), the ornamentals Solanum laxum (syn Solanum jasminoides, 
Verhoeven et al., 2006), and Petunia x hybrida (Verhoeven et al., 1998), and a few species in the families 
Verbenaceae (Verbena sp., Bostan et al., 2004) and Apocynaceae (Vinca major, Nie et al., 2005) have been reported 
as natural hosts of CSVd. This viroid has also been detected in several wild chrysanthemum species in Japan 
(Matsushita et al., 2012) and in wild Oxalis latifolia (family Oxalidaceae, Gobatto et al., 2019) and Solanum nigrum
(Matsushita et al., 2007) in Colombia and Russia, respectively, suggesting the role of weeds as reservoirs of CSVd. 
While chrysanthemum plants infected by CSVd develop symptoms of variable severity on the cultivars (30% being 
asymptomatic), most of the other natural hosts remain symptomless.

The list of plant species identified as experimental hosts of CSVd includes many other species belonging to the 
families reported above and a few species belonging to the families Amaranthaceae, Brassicaceae, Cucurbitaceae, 
Euphorbiaceae, Fabaceae, Nyctaginaceae, Poaceae and Portulacaceae. However only few of the experimental hosts 
develop symptoms upon infection.

Host list: Argyranthemum frutescens, Argyranthemum maderense, Argyranthemum sp., Chrysanthemum crassum, 
Chrysanthemum indicum, Chrysanthemum japonense, Chrysanthemum lavandulifolium, Chrysanthemum makinoi, 
Chrysanthemum x morifolium, Chrysanthemum yoshinaganthum, Chrysanthemum zawadskii, Chrysanthemum 
zawadzkii subsp. zawadzkii, Chrysanthemum, Dahlia, Oxalis latifolia, Pericallis x hybrida, Petunia hybrids, 
Portulaca oleracea, Solanum laxum, Solanum nigrum, Solanum tuberosum, Tanacetum parthenium, Verbena sp., 
Verbena x hybrida, Vinca major

GEOGRAPHICAL DISTRIBUTION

CSVd has been reported in several countries worldwide with recent reports in South America. Several accessions 
(MT995842-MT995845) in GenBank also suggest its presence in Malaysia. Over the years, CSVd has been reported 
in several other countries from which it has now been eradicated. However, since CSVd infections may remain 
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symptomless in several hosts, there is some uncertainty concerning the current distribution.

EPPO Region: Belgium, Czechia, Germany, Italy (mainland, Sicilia), Netherlands, Norway, Poland, Russian 
Federation (the) (Central Russia, Far East), Sweden, Türkiye, United Kingdom (England)
Africa: Egypt, South Africa
Asia: China (Anhui, Hainan, Hebei, Jiangsu), India (Andhra Pradesh, Assam, Bihar, Chandigarh, Chhattisgarh, 
Delhi, Haryana, Himachal Pradesh, Karnataka, Maharashtra, Rajasthan, Sikkim, Tamil Nadu, Uttar Pradesh, West 
Bengal), Japan (Hokkaido, Honshu, Kyushu, Ryukyu Archipelago, Shikoku), Korea, Republic of, Taiwan, Thailand
North America: Canada (New Brunswick, Ontario), United States of America (Kansas, Minnesota, New York)
South America: Brazil (Sao Paulo), Colombia
Oceania: Australia (Queensland, South Australia), New Zealand

BIOLOGY

Chrysanthemum stunt disease, first reported in 1947 (Dimock, 1947), was shown to be caused by a viroid twenty-
five years later (Diener and Lawson, 1973; Hollings and Stone, 1973). Viroids are non-protein coding, single-
stranded circular RNA particles infecting plants (Navarro et al., 2021). The complete genome of CSVd was first 
determined at the beginning of the 1980s (Haseloff and Symons, 1981; Gross et al., 1982) and nowadays several 
hundred CSVd variants of different geographic or host origin have been completely sequenced (NCBI, consulted on 
16/10/2023). The genome of most CSVd variants ranges in size between 354 and 356 nt (Palukaitis, 2017). CSVd is 
classified in a species belonging to the genus Pospiviroid of the family Pospiviroidae. The family Pospiviroidae 
includes viroids that, as is the case for the reference viroid of the family potato spindle tuber viroid PSTVd, replicate 
in the nucleus and contain typical conserved structural motifs (Di Serio et al., 2021). As for the other members of 
this family, CSVd circular RNA assumes a rod-like conformation that contains i) the central conserved region (CCR) 
conserved in all members of the genus Pospiviroid and which is thought likely to be involved in replication (as 
shown for PSTVd); and ii) the terminal conserved hairpin (TCH), a structural motif also contained in the other 
members of the genus Pospiviroid and for which the role remains unknown.

CSVd can be spread by vegetative propagation and transmission via contact, and grafting. Pollen and seeds may also 
play a role.

Vegetative propagation

The most efficient way of spreading of CSVd is through vegetative propagation. Once an infection is established in 
‘mother plants’, the viroid will be present in all progeny derived from these infected plants, including cuttings.
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Contact (mechanical transmission)

CSVd is easily transmitted by grafting, mechanical means, such as rubbing sap onto leaves or stem slashing or 
needle inoculation of sap into the stem; transmission can also happen via contaminated hands or cutting and grafting 
tools (Brierley and Smith, 1949; Brierley, 1953; Hollings and Stone, 1973; Runia and Peters, 1980, Palukaitis and 
Symons, 1980; Palukaitis, 2017). Transmission through plant-to-plant contact is considered possible, but erratic 
(Hollings and Stone, 1973; EFSA plant Health Panel, 2012). Data on transmission through dodder are contradictory 
(Keller, 1949 quoted by Bowen and van Zaayen, 2003; Hollings & Stone, 1973).

Pollen and seeds

Seed transmission in chrysanthemum is subject to some uncertainty since it was reported under certain experimental 
conditions (Moison et al., 1973), but it was not under others (Hollings and Stone, 1973). Chung et al. (2008) 
observed very different seed transmission rates in chrysanthemum, ranging from 6.7% to 96%, depending on 
whether two or only one of the parental plants were infected. The temperature under which crosses were made 
probably also influenced the observed seed transmission rate. CSVd pollen and seed-transmission in tomato also has 
been documented (Kryczynski et al., 1988).

The intensity of symptoms in chrysanthemum plants varies depending on the variety and on the growth condition, 
including light intensity, photoperiod and temperature (Bachelier et al., 1976; Hollings and Stone, 1973; Handley 
and Horst, 1988; Chung et al., 2005). The accumulation of CSVd in infected chrysanthemum plants is temperature 
dependent: the higher the temperature (from 10°C up to 25-35°C), the higher the viroid concentration (Chung et al., 
2006).

Movement of the viroid in its host is also largely dependent on temperature, as shown by low temperature treatments 
(6 months at 2°C) strongly interfering with the distribution of CSVd in chrysanthemum shoot tips, which is likely to 
be due to a reduction in viroid replication and/or the inhibition of viroid intra- and intercellular movement 
(Matsushita and Shima, 2015). Changes in the accumulation and distribution of CSVd in Argyranthemum shoot 
apical meristems were also caused by low temperature treatments, although the host cultivar also played a role 
(Zhang et al., 2016).

DETECTION AND IDENTIFICATION

Symptoms

In florists’ chrysanthemums, about 30% of plants are symptomless carriers. However, even when symptoms are 
manifest, comparison with a healthy plant cannot always confirm diagnosis which, in general, can only be 
established by molecular tests or indexing on differential hosts. In addition, the incubation period of the viroid in 
chrysanthemum is relatively long, from 2 to 3 months depending on the cultivar and on growth conditions. Such a 
long latent period limits the reliability of monitoring or surveillance when they are exclusively based on visual 
inspection.

The most common symptoms include stunting, poor root development, reduction in the numbers and size of flowers, 
which may show colour-breaking, malformations and bleaching. Leaf chlorosis with the development of chlorotic 
spot of different sizes can also be observed and sometimes stems have a tendency to break (Bachelier et al., 1976; 
Hollings and Stone, 1973; Chung et al., 2005; Horst et al., 1977; Palukaitis 2017). Severe symptoms on roots 
(significantly shorter roots and higher number of roots) were observed in CSVd-infected C. x morifolium and 
Chrysanthemum seticuspe (Osaka et al., 2021).

Infected plants bloom earlier than normal plants of the same cultivar and this effect increases with time; on plants 
propagated from infected mother plants, the difference in blooming time is usually shorter in the first year of 
infection (a few days) than in the following year (up to more than 3 weeks). CSVd has been reported to alter the 
photoperiodic response of chrysanthemum plants, with infected plants flowering under long-day conditions 
(Hosokawa et al., 2004a).



Natural hosts other than chrysanthemum are generally symptomless and some infected cultivated chrysanthemum 
cultivar may also remain asymptomatic (Bachelier et al., 1976; Hollings and Stone 1973). However, symptoms of 
stunting, small leaves and small flowers were reported in some cultivars of dahlia naturally infected in Japan and 
similar symptoms were observed in dahlia plants of two cultivars experimentally inoculated (Asano et al., 2020). 
Moreover, while most Argyranthemum cultivars remain symptomless, leaf yellowing and necrosis and flower 
distortion have been observed on CSVd-infected Argyranthemum cultivar 'Butterfly' in France, although the role of 
co-infecting viruses could not be excluded (Marais et al., 2011). In conclusion, since symptom expression depends 
on multiple factors, visual inspection cannot be considered a reliable detection method.

Detection and inspection method

Several laboratory tests are available for rapid and reliable detection of CSVd, including EPPO-recommended 
methods such as RT-PCR tests targeting either several pospiviroids or specifically CSVd (EPPO, 2021). When 
generic primers amplifying all or almost all known pospiviroids are used, sequencing of amplicons is needed for a 
conclusive identification of CSVd. Alternatively, CSVd identification can be achieved directly using the specific real-
time RT-PCR test developed by Mumford et al. (2000). Other molecular detection tests include dot-blot (Candresse 
et al., 1988), tissue blot (Hooftman et al., 1996) and Northern blot hybridization (Torchetti et al., 2012), which have 
the advantage of being less prone to generate false positives caused in PCR by contamination, but are time 
demanding and generally less sensitive than RT-PCR and real-time RT-PCR. A more sensitive test than RT-PCR, 
consisting of a loop-mediated isothermal amplification technique (LAMP) test, has also been developed for the 
specific detection of CSVd (Supakitthanakorn et al., 2022a).

Recently, a quantitative RT-PCR detection test for the simultaneous detection of CSVd and chrysanthemum 
chlorotic mottle viroid (ChCMVd, a viroid of the family Avsunviroidae infecting chrysanthemum) (Supakitthanakorn 
et al., 2023) or a nested multiplex assay to detect CSVd, CChMVd and chrysanthemum virus B (Supakitthanakorn et 
al., 2022b) have been developed.

Bioassays based on grafting onto chrysanthemum indicator plants or mechanical inoculation onto Pericallis cruenta
(syn. Senecio cruentus) were used in the past to detect CSVd infection, but they have been replaced by the more 
reliable and cost-effective molecular tests.

PATHWAYS FOR MOVEMENT

International spread of CSVd is most likely to result from the movement of infected chrysanthemum plants for 
planting (incl. cuttings) in trade. The trade of infected plants for planting of other host species also represents a 
pathway although it is more difficult to assess as many species are asymptomatic. Seed and pollen transmission has 
been demonstrated in chrysanthemum and tomato therefore seed and pollen of these species may also be a pathway 
for international spread and local spread of the viroid. Taking into consideration the mechanical transmission of 
CSVd, its local human-assisted spread within crops is likely, especially in the absence of appropriate hygiene control 
measures.

PEST SIGNIFICANCE

Economic impact

Chrysanthemum stunt was first recognized in the USA, in a major epidemic in 1947. One year after the first 
observation, 30 to 60% of the plants were seriously affected and unmarketable (Dimock, 1947; Brierley and Smith, 
1949; Diener 1979). CSVd causes a serious disease in chrysanthemum and is reported to reduce plant height. 
Reductions in plant height (from 32 to 50%), leaf size (from 25 to 35%), flower number and size (from 14 to 36% 
and from 14 to 75%, respectively) were recorded in several infected chrysanthemum varieties in South Korea 
(Chung et al., 2005). If cuttings from infected plants are used, reductions in plant height of over 90% may result the 
following year. Moreover, within 2 years, the number of cuttings which can be produced from infected mother plants 
may be reduced by 90%. The induction of early flowering has serious consequences for producers of potted plants. 
In 1987, a CSVd outbreak in Australia (Victoria) required control measures with a cost quoted at 3 million AUD 



(Moran and Bate, 1988 quoted by Hill et al., 1996). With yield reduction of up to 65%, pompon-type 
chrysanthemum varieties have been reported to be more sensitive to CSVd infection than standard cultivars, with a 
clear seasonal effect leading to higher losses in summer flower crops in both cases (Horst et al., 1977). Epidemic 
events can be associated with very high incidence, as reported in South Korea (100%, Chung et al., 2005), Japan 
(90%, Matsushita et al., 2007) and India (70%, Singh et al., 2010).

Flowering time alteration induced by CSVd (Hollings and Stone 1973; Sugiura and Hanada, 1998; Hosokawa et al., 
2004a; Chung et al., 2005), may also have important economic relevance if it interferes with the expected 
commercialization period.

In addition to the cost to implement eradication efforts imposed by legislation in some countries, no direct important 
economic losses have been recorded on CSVd-infected ornamental hosts other than chrysanthemum. However, the 
incidence of CSVd in ornamentals may reach very high levels as shown during outbreaks in dahlia in Japan 
(Nakashima et al., 2007) and in Argyranthemum frutescens in Italy (Torchetti et al., 2012).

Control

There are no chemical or biological methods available to control CSVd in infected plants. Therefore, prevention is 
necessary to avoid infection. Limiting the impact of the disease in an area where the viroid is established is mainly 
based on the use of CSVd-free certified propagation material (EPPO, 2000; EPPO, 2008). Hygiene best practice, 
including the use of disposable outer clothes, gloves, overshoes and the treatment of cutting tools and machineries 
with disinfectants (e.g. sodium hypochlorite and commercial agricultural disinfectants) will also contribute to limit 
CSVd spread.

Viroid-free chrysanthemum may be obtained, with variable results, by meristem-tip culture, which may be combined 
with heat or cold therapy treatments (Hollings & Stone, 1970; Bachelier et al., 1976; Paduch-Cichal and Kryczynski, 
1987; Hosokawa et al., 2004b; Savitri et al., 2013). Low temperature treatments associated with meristem tip culture 
was also effective to produce viroid free Argyranthemum ‘Border Dark Red’, but not ‘Yellow Empire’ (Zhang et al., 
2016). Cryopreservation, a technique mostly used for germplasm conservation but shown to efficiently eliminate 
pathogens, has been proposed as a possible alternative method for the treatment of CSVd-infected chrysanthemum 
plants, with efficacy largely depending on the genotype and the initial viroid concentration (Jeon et al., 2016).

There are so far no commercial chrysanthemum cultivars showing total resistance to CSVd, but the existence of 
resistance in commercial chrysanthemum cultivars has been reported by several authors (reviewed by Nabeshima et 
al., 2018). However, segregation of the resistance in the progeny and genetic analyses are complex due to the high 
polyploidy of cultivated chrysanthemum varieties. The recent identification of a resistant accession of the wild 
diploid C. seticuspe is expected to facilitate the analyses of the inheritance of CSVd-resistance (Matsushita et al., 
2019b). Transgenic resistance to CSVd could provide an alternative as it has been achieved by expressing various 
constructs in transformed chrysanthemum plants, such as an RNA nuclease targeting double-stranded RNA 
molecules (pac1, Ogawa et al., 2005), a catalytic single-chain antibody (3D8 scFv, Tran et al., 2016) or sense and 
antisense CSVd RNA sequences (Jo et al., 2015).

Phytosanitary risk

There are no known ecoclimatic constraints for the establishment of CSVd in new areas, except those affecting its 
hosts. Due to the severity of the disease induced in commercial chrysanthemum cultivars, CSVd is included in the 
EPPO A2 list of pests recommended for regulation as a quarantine pest. CSVd is considered as a quarantine pest in 
several countries worldwide (EPPO global database). In the EU, CSVd is currently included in the list of regulated 
non-quarantine pests for plants for planting (other than seeds) of Argyranthemum and Chrysanthemum. The 
phytosanitary risk associated with CSVd in the EU, and possibly elsewhere, is largely reduced by the certification of 
chrysanthemum propagation material (EFSA PLH Panel, 2012).

PHYTOSANITARY MEASURES

To prevent the introduction and spread of CSVd, plants for planting of chrysanthemum and other hosts should be 
produced in a pest free area, in a pest free place/site of production, or shown to be free from CSVd by appropriate 
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test methods and surveys. A number of EPPO countries already have such regulations in place. Seeds and pollen are 
also potential entry pathways in the case of chrysanthemum and tomato, but they have been considered by EFSA 
(EFSA PLH Panel, 2012) as being of minor significance due to the inconsistent volumes of traded chrysanthemum 
seeds and pollen and the rarity of natural CSVd infections in tomato. This pathway may also be relevant in the case 
of the other natural hosts for which seed and pollen transmission may exist but has not been demonstrated.
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