

ORGANISATION EUROPEENNE
ET MEDITERRANEEENNE
POUR LA PROTECTION DES PLANTES

EUROPEAN AND MEDITERRANEAN
PLANT PROTECTION
ORGANIZATION

EPPO Reporting Service

No. 1 PARIS, 2026-01

General

2026/001 New data on quarantine pests and pests of the EPPO Alert List
2026/002 IPPC Pest Alerts on *Rhizoctonia theobromae* and *Fusarium oxysporum* f. sp. *cubense* Tropical Race 4

Pests

2026/003 First report of *Scirtothrips dorsalis* in Belgium
2026/004 First report of *Scirtothrips dorsalis* in Germany
2026/005 Update on the situation of *Scirtothrips aurantii* and *Scirtothrips dorsalis* in the Netherlands
2026/007 Incursion of *Ips calligraphus* in Spain
2026/008 Update on the situation of *Pseudips mexicanus* in Ireland
2026/009 *Monochamus urussovii* is a vector of *Bursaphelenchus xylophilus* in China
2026/010 *Prodiplosis longifila* is emerging as a pest of cut foliage in Colombia
2026/011 Update on the situation of *Garella muscularia* in Bulgaria
2026/012 First reports of *Dactylopius opuntiae* in Algeria, Libya and Syria
2026/013 Eradication of *Leptinotarsa decemlineata* in the United Kingdom

Diseases

2026/014 New information of *Ceratobasidium* sp. associated with vascular streak dieback of woody ornamentals in the USA
2026/015 *Fusarium oxysporum* f. sp. *cubense* Tropical race 4 is officially confirmed in Ecuador
2026/016 First record of *Ceratocystis platani* in Croatia
2026/017 First report of watermelon crinkle leaf-associated virus 1 and watermelon crinkle leaf-associated virus 2 in Greece
2026/018 First report of Tomato brown rugose fruit virus in *Brassica napus*
2026/019 Eradication of American plum line pattern virus in the Netherlands

Invasive Plants

2026/020 First report of *Ambrosia trifida* in Montenegro
2026/021 First report of *Euphorbia hypericifolia* in Tunisia
2026/022 First report of *Hydrocharis laevigata* in France
2026/023 Spread potential of *Phytolacca americana* in Poland
2026/024 Potential for establishment of *Araujia sericifera* in the EPPO region

2026/001 New data on quarantine pests and pests of the EPPO Alert List

By searching through the literature, the EPPO Secretariat has extracted the following new data concerning quarantine pests and pests included (or formerly included) on the EPPO Alert List, and indicated in bold the situation of the pest concerned using the terms of ISPM 8.

- **New records**

In New Zealand, a single male specimen of *Bactrocera tryoni* (Diptera: Tephritidae - EPPO A1 List) was caught in January 2026 in a trap in the Mount Roskill area, Auckland city (Biosecurity New Zealand, 2026). Phytosanitary measures have been implemented including increased trapping and inspection, establishment of a demarcated area and controls on the movement of fruit and vegetables out of the demarcated area. **Present, not widely distributed and under official control.**

In France, a new disease on strawberry (*Fragaria ananassa*) caused by a *Neopestalotiopsis* species (probably *Neopestalotiopsis rosae*) was first observed in 2024 in the South Western part of the country. In 2025, damage on up to 50% of plants per plot was observed in different regions, with most cases in Vaucluse, Lot-et-Garonne and Bouches-du-Rhône departments, which are the biggest strawberry producing regions in the country. Outbreaks seemed to be linked to the use of infested plants for planting (Gardonier *et al.*, 2025). **Present, not widely distributed.**

The whitefly *Parabemisia myricae* (EU RNQP) is first reported from Hungary. It was observed outdoors in September 2025 on leaves of *Parthenocissus quinquefolia* in Budapest (Érsek & Ripka, 2025). It is not clear from the article whether the pest is established or not.

Watermelon crinkle leaf-associated virus 1 (*Coguvirus citrulli*, WCLaV-1 - EPPO Alert List) is first reported in Iran. In July 2024, yellow mosaic, leaf deformation and mild to severe crinkling was observed on watermelon (*Citrullus lanatus*) plants in commercial fields in northern and southern Iran. The identity of the pest was confirmed by molecular testing (Esmaeilzadeh *et al.*, 2025). **Present, not widely distributed.**

Citrus canker caused by *Xanthomonas citri* pv. *citri* (EPPO A1 List) is reported for the first time from Madagascar. Canker-like symptoms were observed on *Citrus* sp. in May 2024 in a single site of Boeny region, a major citrus producing area. Surveys conducted in 2025 in 60 citrus orchards and nurseries in the Boeny region indicated that *X. citri* pv. *citri* is widely distributed in the Boeny region. Further surveys are needed to determine the spread of the pathogen across Madagascar (Boyer *et al.*, 2025). **Present, not widely distributed.**

Xanthomonas euvesicatoria pv. *euvesicatoria* (EPPO A2 List) is reported for the first time in Saudi Arabia. In 2023 and 2024, *X. euvesicatoria* pv. *euvesicatoria* was identified as the causative agent of bacterial spot on tomato (*Solanum lycopersicum*) and pepper (*Capsicum* sp.) in field and greenhouse conditions in Riyadh region. The identity of the pest was confirmed by molecular testing (Ibrahim *et al.*, 2025). **Present, not widely distributed.**

- **Detailed records**

In Canada, cherry leaf roll virus (*Nepovirus avii*, CLRV, EU RNQP) was detected in September 2025 in a sample collected from a single sweet cherry (*Prunus avium*) tree at a commercial orchard in the Niagara region in Ontario. The infected tree was destroyed. CLRV is a

regulated pest for Canada that had previously only been reported from the province of British Columbia in cherry (IPPC, 2025).

The pest status of cherry leaf roll virus in Canada is officially declared as: **Present, not widely distributed and under official control.**

In the USA, *Cydalima perspectalis* (Lepidoptera: Crambidae - formerly EPPO Alert List) was first reported from West Virginia in June 2025. Quarantine measures have been established in December 2025 (USDA, 2025). As of January 2026 the pest has been confirmed in Delaware, Kentucky, Maryland, Massachusetts, Michigan, New York, Ohio, Pennsylvania, Virginia, and West Virginia. **Present, not widely distributed and under official control.**

In Brazil, *Eutetranychus banksi* (Acari: Tetranychidae, EPPO Alert List) occurs in the state of Sergipe and affects citrus production (Dias *et al.*, 2025).

In the USA, the root-knot nematode *Meloidogyne enterolobii* (EPPO A2 List) is first reported from Alabama. In February 2025, it was detected causing severe root galls on crape myrtle (*Lagerstroemia indica*) in a commercial nursery in central Alabama (Lawaju *et al.*, 2025). **Present, not widely distributed and not under official control.**

In Brazil, *Neopestalotiopsis rosae* is first recorded causing foliar damage (leaf spot) in rose (*Rosa* sp.) production in Rio Grande do Sul (Almeida *et al.*, 2025). **Present, not widely distributed and not under official control.**

In Italy, the palm borer moth *Paysandisia archon* (Lepidoptera: Castniidae - EPPO A2 List) was first reported in Campania in 2002 (EPPO RS 2004/162) and has since spread to 18 out of 20 Italian regions. In August 2025, *P. archon* damage were observed on the Mediterranean dwarf palm (*Chamaerops humilis*) in Cosenza province in Calabria. This is the first report of *P. archon* in Calabria. *P. archon* is now considered to be present in all Italian regions except Aosta Valley (Mazza & Mori, 2025). **Present, widely distributed.**

In Uzbekistan, tomato brown rugose fruit virus (*Tobamovirus fructirugosum*, ToBRFV - EPPO A2 List) was first observed on tomato (*Solanum lycopersicum*) in 2020 (EPPO RS 2021/222, RS 2024/049). In 2024, ToBRFV was detected in symptomatic sweet pepper (*Capsicum annuum*) grown in both greenhouse and open field conditions in the Tashkent and Kibray districts of the Tashkent region, and in open fields in the Taylok district of the Samarkand region (Akhmadaliev *et al.*, 2025). **Present, not widely distributed.**

In the USA, watermelon crinkle leaf-associated virus 1 (*Coguvirus citrulli*, WCLaV-1 - EPPO Alert List) and watermelon mosaic virus (*Potyvirus citrulli*, WMV) are first reported in Indiana. In August 2024, mosaic, yellowing, leaf deformation and wrinkling were observed on watermelon (*Citrullus lanatus*) plants growing in fields in southern Indiana (Keener *et al.*, 2025). The identity of the pathogens was confirmed by molecular testing. Two samples tested positive for WCLaV-1, two samples tested positive for WMV, and one sample tested positive for both viruses.

In China, watermelon silver mottle virus (*Orthotospovirus citrullomaculosi*, WSMo - EPPO A1 List) is first reported from Jiangxi province. It was identified by RT-PCR and HTS in symptomatic watermelon (*Citrullus lanatus*) collected in 2023 and 2024. The same article reports the presence of WSMo in Hainan, Shandong and Zhejiang as well as an isolate from Hebei. This significantly increases the range of WSMo in China (Peng *et al.*, 2025). **Present, not widely distributed and not under official control.**

An article on the biology of *Xylotrechus pyrrhoderus* (Coleoptera: Cerambycidae, EPPO A1 List) in the Shandong province of China mentions the presence of the pest in Hebei province (Zhang *et al.*, 2025).

- **Eradication**

As of June 2025 the full territory of Bolivia is declared free of the cotton boll weevil *Anthonomus grandis* (Coleoptera: Curculionidae, EPPO A1 List) (Comunidad andina, 2025). **Absent: the entire country is pest free.**

In the USA, several outbreaks of tomato brown rugose fruit virus (*Tobamovirus fructirugosum*, ToBRFV - EPPO A2 List) occurred since 2019 (EPPO RS 2019/027, RS 2020/124). In January 2026 USDA-APHIS informed the EPPO Secretariat that all known detections of ToBRFV in the USA have been mitigated, and that it is not considered established in the United States. ToBRFV is a quarantine pest for the entire USA. **Absent, pest eradicated.**

Sources:

- Akhmadaliev B, Abduvaliev B, Adilov B, Sherimbetov A, Abdikarimov B, Ruzmetov D (2025) First report of tomato brown rugose fruit virus infecting sweet pepper (*Capsicum annuum*) in open fields in Uzbekistan. *Plant Disease* **109**(9), 2001. <https://doi.org/10.1094/PDIS-12-24-2720-PDN>
- Almeida BP, Junges E, Savian LG (2025) *Neopestalotiopsis rosae* causing leaf spot on *Rosa* sp. in Brazil. *Caderno Pedagógico* **22**(11), e20006. <https://doi.org/10.54033/cadpedv22n11-219>
- Boyer K, Hoareau C, Lebon-Maillot V, Rieux A, Robène I, Pruvost O, Rakotomalala V, Andriamiarisoa DL, Randriamampianina OH, Ramiliarijaona SN (2025) First report of *Xanthomonas citri* pv. *citri* pathotype A causing Asiatic citrus canker in Madagascar. *Plant Disease* **109**(12), 2586. <https://doi.org/10.1094/PDIS-06-25-1181-PDN>
- Biosecurity New Zealand (2026) Queensland fruit fly detection in Mt Roskill, Auckland. Accessed at: <https://www.mpi.govt.nz/biosecurity/exotic-pests-and-diseases-in-new-zealand/active-biosecurity-responses-to-pests-and-diseases/queensland-fruit-fly-detection-in-mt-roskill-auckland>
- Comunidad andina (2025) Resolución N°2503 Reconocimiento al Estado Plurinacional de Bolivia como Área Libre de *Anthonomus grandis*, Boheman, 1843 (picudo mexicano del algodón). *Gaceta Oficial des Acuerdo de Cartagena* 5662. <https://www.comunidadandina.org/DocOficialesFiles/Gacetas/GACETA%205662.pdf>
- Dias K, Teodoro AV, Sena Filho JG de (2025) Potential of cottonseed oil in the control of the citrus blackfly *Aleurocanthus woglumi* (Hemiptera: Sternorrhyncha: Aleyrodidae) and the Texas citrus mite *Eutetranychus banksi* (Acari: Tetranychidae) in the citrus region of Sergipe and Bahia. *Scientia Plena* **21**(12). <https://doi.org/10.14808/sci.plena.2025.120201>
- Érsek L, Ripka G (2025) First occurrence of an alien whitefly species, *Parabemisia myricae* (Kuwana, 1927) (Hemiptera: Aleyrodidae) in Hungary. *Növényvédelem* **86**(12), 549-555.
- Esmaeilzadeh F, Pouraziz P, Koolivand D (2025) First report of watermelon crinkle leaf-associated virus 1 infecting watermelon in Iran. *Journal of Plant Pathology* <https://doi.org/10.1007/s42161-025-02091-x>

Garnodier J, Gasq S, Carmenstran M, Fontaine V (2025) Dépérissements du fraisier dû à un nouveau pathogène. *Phytoma* **786**, 21-24.

Ibrahim YE, Mansoor T, Al Masrahi AA, Widyawan A, Al Hashel AF, Al Saleh MA (2025) Occurrence and characterization of *Xanthomonas euvesicatoria* pv. *euvesicatoria*, the causal agent of bacterial spot of tomato and pepper in the Riyadh region of Saudi Arabia. *Journal of Plant Pathology* **17**, 1-9.

IPPC website. Official Pest Reports- Canada (2025-12-09) Report of cherry leaf roll virus (*Nepovirus avii*) in Ontario, Canada / Rapport du virus de l'enroulement des feuilles du cerisier (*Nepovirus avii*) en Ontario, Canada.

<https://www.ippc.int/fr/countries/canada/pestreports/2025/12/report-of-cherry-leaf-roll-virus-nepovirus-avii-in-ontario-canada-rapport-du-virus-de-lenroulement-des-feuilles-du-cerisier-nepovirus-avii-en-ontario-canada/>

Keener R, Serrano J, Alvarez-Quinto R, Guan W, Creswell T, Bonkowski J, Escalante C (2025) Watermelon crinkle leaf-associated virus 1 and watermelon mosaic virus mixed infecting watermelon (*Citrullus lanatus*) in Indiana. *Plant Disease* (early view) <https://doi.org/10.1094/PDIS-03-25-0497-PDN>

Lawaju BR, Pickens J, Conner K, Ye W, Lawrence K (2025) First report of *Meloidoyne enterolobii* infecting *Lagerstroemia indica* in Alabama, United States. *Journal of Nematology* **57**(1), 20250057. <https://doi.org/10.2478/jofnem-2025-0057>

Mazza G, Mori DR (2025) First record of *Paysandisia archon* Burmeister, 1880 (Insecta Lepidoptera Castniidae) in Calabria (southern Italy). *Redia* **108**, 291-292. <http://dx.doi.org/10.19263/REDIA-108.25.35>

Peng B, Zhang X, Cao N, Yan C, Li F, Zhu F (2025) Identification of reassortment of *Orthotospovirus citrullomaculosi* in Jiangxi Province, China. *Viruses* **17**(11), 1448. <https://doi.org/10.3390/v17111448>

USDA (2025-12-08) APHIS Establishes a Box Tree Moth (*Cydalima perspectalis*) Quarantine in West Virginia. <https://www.aphis.usda.gov/plant-pests-diseases/box-tree-moth>

USDA-APHIS (2026-01).

Zhang G, Jia Y, Wu H, Zhang Y, Ghanim M, Ma Y, Sun R (2025) Developmental biology and seasonal damage of the grape borer *Xylotrechus pyrrhoderus* in grapevines. *Insects* **16**, 979. <https://doi.org/10.3390/insects16090979>

Additional key words: new record, detailed record, eradication, absence

Computer codes: CLRV00, DACUTR, EUTEBA, MELGMY, NPESRS, PAYSAR, PRABMY, TCMLSL, TOBRFV, WCLAV1, WMSMOV, WMV000, XANTCI, XANTEU, XYLOPY, BR, CA, CN, DZ, FR, HU, IR, IT, MG, NZ, SA, US, UZ

2026/002 IPPC Pest Alerts on *Rhizoctonia theobromae* and *Fusarium oxysporum* f. sp. *cubense* Tropical Race 4

As part of the Pest Outbreak Alert and Response System (POARS), the IPPC Secretariat has given two new Pest Alerts regarding *Rhizoctonia theobromae* and *Fusarium oxysporum* f. sp. *cubense* Tropical Race 4.

Rhizoctonia theobromae is a fungal pathogen responsible for causing Vascular Streak Dieback in cacao (*Theobroma cacao*) and Witches' Broom in cassava (*Manihot esculenta*) (see also EPPO RS 2025/048) Recent reports indicate that this pathogen has a wider distribution and

is having a greater impact on important tropical crops than previously thought, therefore meeting the IPPC's criteria for an emerging pest. The IPPC will establish a dedicated Expert Working Group to develop global materials to support contracting parties in prevention, preparedness, and response.

A distribution map is available in EPPO Global Database: <https://gd.eppo.int/taxon/ONCOTH/distribution>.

The alert for *Fusarium oxysporum* f. sp. *cubense* Tropical race 4 (Foc TR4, EPPO A2 list) was given after confirmation of an outbreak in Ecuador (EPPO RS 2026/015). This pathogen is the causal agent of Fusarium wilt of banana, a highly destructive soil-borne disease affecting banana, plantain, and other *Musa* species. Due to its severe economic impact, long-term persistence in the soil, and limited management options, the POARS Steering Group assessed and qualified Foc TR4 as an emerging pest of global concern.

Read the full pest alerts: <https://www.ippc.int/en/core-activities/capacity-development/programmes/strengthening-pest-outbreak-alert-and-response-systems/pest-alerts/>

Source: IPPC Secretariat (2025-11, 2025-12).

Pictures: *Rhizoctonia theobromae*. <https://gd.eppo.int/taxon/ONCOTH/photos>
Fusarium oxysporum f. sp. *cubense* Tropical Race 4.
<https://gd.eppo.int/taxon/FUSAC4/photos>

Additional key words: Alert List

Computer codes: ONCOTH, FUSAC4

2026/003 First report of *Scirtothrips dorsalis* in Belgium

The NPPO of Belgium recently informed the EPPO Secretariat of the first finding of *Scirtothrips dorsalis* (Thysanoptera: Thripidae - EPPO A2 List) on its territory.

Following a notification from the Netherlands of the detection of *S. dorsalis* in a lot of *Laurus nobilis** plants originating from the production site of a Belgian operator in Oost-Vlaanderen province (Vlaams Gewest region), visual inspections of the production site were carried out in November 2025. During these inspections, the presence of *S. dorsalis* was confirmed in the open air at the production site. The identity of the pest was confirmed by morphological and molecular testing. Official phytosanitary measures have been implemented to avoid any further spread of the pest, including a trade ban on the operator. The origin and extent of the outbreak are under investigation.

The pest status of *Scirtothrips dorsalis* in Belgium is officially declared as: **Transient, 1 outbreak in a specific area, limited to a production site, actionable, under eradication.**

* Not previously listed as a host

Source: NPPO of Belgium (2025-12).

Pictures: *Scirtothrips dorsalis*. <https://gd.eppo.int/taxon/SCITDO/photos>

Additional key words: new record

Computer codes: SCITDO, BE

2026/004 First report of *Scirtothrips dorsalis* in Germany

The NPPO of Germany recently informed the EPPO Secretariat of the first finding of *Scirtothrips dorsalis* (Thysanoptera: Thripidae - EPPO A2 List) on its territory.

Following trace forward investigations from an outbreak of *S. dorsalis* on *Podocarpus macrophyllus* bonsais in the Netherlands, the Bavarian Plant Protection Service was informed in September 2025 that a lot of 20 bonsai plants of various species that were suspected of being infested by *S. dorsalis* had been delivered to the greenhouse of a bonsai trader in Bavaria in May 2025. 15 plants from the consignment had already been sold. In October 2025, the five remaining plants in the greenhouse were inspected for the presence of *S. dorsalis* and no infestation was found. In late October 2025, sticky traps were placed in the greenhouse. In November 2025, several *S. dorsalis* specimens were trapped and the identity of the pest was confirmed by morphological and molecular tests. The greenhouse (0.13 ha) contains approximately 200 bonsai plants of various species and an additional 200 plants for overwintering. All plants in the greenhouse have been declared to be probably infested. No signs of the pest have been reported and no *S. dorsalis* have been found on any plants. Phytosanitary measures have been implemented with the aim of eradication, including a ban on the movement of plants out of the greenhouse, insecticide treatment and additional trap setting and inspections. The NPPO of Germany considers that the source of the infestation is the delivery of infested plants.

The pest status of *Scirtothrips dorsalis* in Germany is officially declared as: **Transient, actionable, under eradication.**

Source: NPPO of Germany (2025-12).

Pictures: *Scirtothrips dorsalis*. <https://gd.eppo.int/taxon/SCITDO/photos>

Additional key words: new record

Computer codes: SCITDO, DE

2026/005 Update on the situation of *Scirtothrips aurantii* and *Scirtothrips dorsalis* in the Netherlands

In the Netherlands, *Scirtothrips dorsalis* (Thysanoptera: Thripidae - EPPO A2 List) had previously been found in 2019 and 2022 in relation with imported plants and eradicated (EPPO RS 2022/204, RS 2022/204, RS 2023/010). *Scirtothrips aurantii* (Thysanoptera: Thripidae - EPPO A1 List) was first found on ornamental plants in October 2024 before eradication in July 2025 (RS 2025/195).

The NPPO of the Netherlands recently informed the EPPO Secretariat of new findings of *Scirtothrips aurantii* (Thysanoptera: Thripidae - EPPO A1 List) and *Scirtothrips dorsalis* (Thysanoptera: Thripidae - EPPO A2 List) on its territory in the provinces of Zuid-Holland and Noord-Brabant.

- Noord-Brabant province

In October 2025, *S. dorsalis* was found on *Baccharis genistelloides* during an export inspection on ornamental plants for planting from a greenhouse (2 ha) in the municipality of Midden-Noord-Brabant (Noord-Brabant province). Further inspections in the greenhouse and a neighbouring greenhouse (0.7 ha) discovered *S. dorsalis* of different life stages on 10 ornamental plant species: *Baccharis genistelloides*, *Magnolia grandiflora*, *Fatsia japonica*, *Pieris japonica*, *Pittosporum tenuifolium*, *Euonymus japonicus*, *Viburnum tinus*, *Skimmia japonica*, *Caryopteris clandonensis* and *Azalea japonica*. Later in October, *S. dorsalis* was reported on yellow sticky traps that had been placed in both greenhouses and a neighbouring shade house (0.25 ha). No *S. dorsalis* was reported on traps placed on plant pots outside the greenhouses and shade house. In total 1592 plants were declared as infested. Forward tracing identified deliveries of plants from the greenhouses to other EU countries, who have been notified. Sampling, back tracing and forward tracing is ongoing.

In December 2025, all lots with infested plants in the 2-ha greenhouse and shade house were incinerated and the greenhouse and shade house were cleaned. A ban applies on the movement of all remaining plants outside the facilities until April 2026. Other phytosanitary measures in the 2-ha greenhouse have been lifted but remain in place in the 0.7-ha greenhouse.

During the inspection of the first greenhouse found infested (2 ha) in October 2025, two suspected larvae of *S. aurantii* were reported on *Olea europaea* plants. One larva was first identified as *S. aurantii* by morphological test but during reexamination the identity could not be confirmed with certainty so they were identified as *Scirtothrips cf. aurantii*.

- Noord-Holland province

In November 2025, during a post-import monitoring inspection, two suspected larvae of *S. aurantii* were found in a greenhouse in Noord-Holland on rosemary plants (*Salvia rosmarinus*) originating from another EU Member State. During a follow-up inspection at the end of the month, one female *S. aurantii* was found in a lot of 115 ornamental *S. rosmarinus* plants for planting. The identity of the pest was confirmed by morphological and molecular tests. Trace forward investigations showed that other *S. rosmarinus* plants had been sold. Official phytosanitary measures have been applied, including the use of plant protection products, incineration of infested plants and a ban on the movement of any plants out of the greenhouse compartment.

- Zuid-Holland province

Forward tracing from an outbreak of *S. dorsalis* in July 2025 on *Podocarpus macrophyllus* in a nursery greenhouse in Utrecht (RS 2025/195) identified a company that had received *Zelkova parvifolia* and *Ficus retusa* plants. In October 2025, *S. dorsalis* was first found on yellow sticky traps placed in the greenhouse near plants of *Z. parviflora* and *F. retusa*, then the greenhouse was inspected and adult specimens of *S. dorsalis* were found on seven bonsai plants of *Zanthoxylum* sp. No additional *S. dorsalis* were found on traps. The identity of the pest was confirmed by morphological analysis. Official phytosanitary measures have been implemented, including a ban on the movement of any plants out of the facilities until April 2026.

The pest status of *Scirtothrips aurantii* in the Netherlands is officially declared as: **Transient, actionable, under eradication.**

The pest status of *Scirtothrips dorsalis* in the Netherlands is officially declared as: **Transient, actionable, under eradication.**

Source: NPPO of the Netherlands (2025-10, 2025-11, 2025-12).

Pictures: *Scirtothrips dorsalis*. <https://gd.eppo.int/taxon/SCITDO/photos>
Scirtothrips aurantii. <https://gd.eppo.int/taxon/SCITAU/photos>

Additional key words: detailed record

Computer codes: SCITAU, SCITDO, NL

2026/006 First report of *Trachymela sloanei* in Algeria

The Australian tortoise beetle *Trachymela sloanei* (Coleoptera: Chrysomelidae - EPPO Alert List) is a eucalyptus leaf feeder originating from Australia that has been introduced in the EPPO region in Spain, Portugal and Greece (EPPO RS 2016/101, RS 2024/008).

During surveys conducted between May and August 2025, 20 adult *T. sloanei* beetles were recorded on *Eucalyptus camaldulensis* trees in a park in Sidi Amar, Annaba wilaya (northeastern Algeria). Foliar damage was observed on all seven *E. camaldulensis* trees in the park, suggesting *T. sloanei* may have established in the area. The identity of the pest was confirmed by morphological testing. This is the first report of *T. sloanei* in Algeria and the first report on the continent of Africa.

The situation of *Trachymela sloanei* in Algeria can be described as: **Present, not widely distributed.**

Source: Hadiby R, Boukheroufa M, Vitali F, Sakraoui F, Frih A, Benhacene R, Benotmane KH, Adjami Y (2025) First report of the invasive Australian tortoise beetle *Trachymela sloanei* (Blackburn, 1897) (Coleoptera: Chrysomelidae) in Algeria. *Zootaxa* 5725(3), 438-444. <https://doi.org/10.11646/zootaxa.5725.3.7>

Pictures: *Trachymela sloanei*. <https://gd.eppo.int/taxon/TCMLSL/photos>

Additional key words: new record

Computer codes: TCMLSL, DZ

2026/007 Incursion of *Ips calligraphus* in Spain

In Spain, *Ips calligraphus* (Coleoptera: Scolytinae, EPPO A1 List) was first reported in August 2019 in the port of Valencia but was not considered to have established and no further specimens were found during surveys in 2021 (EPPO RS 2023/227).

The NPPO of Spain recently informed the EPPO Secretariat that *I. calligraphus* had been found on its territory. In June 2025, 5 specimens were caught in two pheromone traps in the Port of Valencia (Comunitat Valenciana) and 2 specimens were caught in one pheromone trap in a forest area near the port that is used to detect the entry and establishment of pests. All traps were part of the Valencian Early Warning Network. The identity of the pest was confirmed by morphological test. Phytosanitary measures were implemented including increased visual inspections and trapping. Monthly inspections from July to November 2025 did not find any signs of presence and no further specimens were found in the Port of Valencia or the forest area since June. Therefore, the NPPO of Spain considers that *I. calligraphus* has not established in this area and that these specimens likely entered the Port of Valencia through imported commodities from North America. Visual inspections and trapping in and around the Port of Valencia are ongoing.

The pest status of *Ips calligraphus* in Spain if officially declared as: **Absent, pest no longer present for reasons other than eradication.**

Source: NPPO of Spain (2025-12, 2026-01).

Pictures: *Ips calligraphus*. <https://gd.eppo.int/taxon/IPSXCA/photos>

Additional key words: incursion

Computer codes: IPSXCA, ES

2026/008 Update on the situation of *Pseudips mexicanus* in Ireland

In Ireland, *Pseudips mexicanus* (Coleoptera: Curculionidae: Scolytinae - EPPO Alert List) was first found in traps in August 2023 in Shannon municipality, Clare country, Mid-West region (EPPO RS 2020/004). In April 2024 the pest was found again in the demarcated area in Clare county and for the first time in Limerick county, resulting in the expansion of the demarcated area (RS 2024/119).

In 2025, approximately 200 *P. mexicanus* beetles were found during surveillance activities. Most beetles were found in pheromone traps within the demarcated area. 8 adults and 2 suspect pupae were found in one dead Scots pine (*Pinus sylvestris*)* and a single adult beetle was found in one dead lodgepole pine (*Pinus contorta*), both within the demarcated area. A further nine beetles were found in four locations outside the demarcated area in traps in Clare, Limerick and Tipperary counties. Follow-up surveillance near traps outside of the demarcated area found no evidence of a local population of *P. mexicanus*, therefore the demarcated area was not extended. No evidence of damage from *P. mexicanus* or infested plants was observed during the 2025 surveillance.

The official pest status of *Pseudips mexicanus* in Ireland has not yet been determined.

* This is the first record of *P. sylvestris* as a host of the pest. However, it is noted that the tree was damaged before being infested and its death did not result from the pest infestation.

Source: NPPO of Ireland (2025-11).

A map of the demarcated area is available at: <https://www.gov.ie/en/department-of-agriculture-food-and-the-marine/publications/monterey-pine-engraver-pseudips-mexicanus-discovered-in-co-clare/>

Pictures: *Pseudips mexicanus*. <https://gd.eppo.int/taxon/IPSXRA/photos>

Additional key words: detailed record

Computer codes: IPSXRA, IE

2026/009 *Monochamus urussovii* is a vector of *Bursaphelenchus xylophilus* in China

Monochamus urussovii (Coleoptera: Cerambycidae - EAEU A2 List) is a known vector of the nematode *Bursaphelenchus mucronatus*. Experiments conducted in 2022 in Jilin province (northeast China) confirmed that it can also vector *Bursaphelenchus xylophilus* (EPPO A2 List) in *Pinus koraiensis*.

Bursaphelenchus xylophilus was isolated from adult *M. urussovii* specimens that had emerged from dead *P. koraiensis* in a forest affected by pine wilt disease. Transmission experiments were also conducted on 6-year-old *P. koraiensis* plants and showed that *M. urussovii* transmitted the nematode.

Source: Yu L, Liang Y, Wang X, Ren J, Sun W, Wang Y, Ren L, Wang X (2026) Implications of *Monochamus sartor urussovi* Fisher as a carrier of *Bursaphelenchus xylophilus* (Steiner and Buhuer) for *Pinus koraiensis* Siebold & Zucc. populations in China. *Forest Pathology* 56(1), e70058.

Additional key words: aetiology, vector

Computer codes: MONCUR, BURSXY, CN

2026/010 *Prodiplosis longifila* is emerging as a pest of cut foliage in Colombia

Prodiplosis longifila (Diptera: Cecidomyiidae - EPPO A1 List) is a polyphagous pest originating from South America and known to be damaging to tomato, sweet peppers and asparagus. A study conducted in Colombia showed that producers of green cut foliage considered *P. longifila* to be an emerging pest, in particular for *Ruscus* and *Cocculus* species. Losses between 20-40% were observed (defined as the proportion of foliage showing larval presence or damage that makes the foliage unsuitable for sale at market quality).

Source: Valbuena-Gaona LA, Villamil-Martha HJ, Pardo-Ramírez LM, Ramírez-Gil JG (2025) Citizen science and digital data for trend analysis and impact assessment of *Prodiplosis* as an emerging pest in foliage crops. *Agronomía Colombiana* 43(1), 1-20. Doi: 10.15446/agron.colomb.v43n1.118919

Pictures: *Prodiplosis longifila*. <https://gd.eppo.int/taxon/PRDILO/photos>

Additional key words: host plant, pathway

Computer codes: PRDILO, CO

2026/011 Update on the situation of *Garella musculana* in Bulgaria

In Bulgaria, *Garella musculana* (Lepidoptera: Nolidae - EPPO A2 List) was first found in 2016 in the province of Varna (EPPO RS 2019/009) and in 2019 in the province of Burgas (RS 2019/154), both along the Black Sea Coast.

In September 2023, *G. musculana* was first recorded in inland Bulgaria, with detections in four urban and suburban sites within Sofia City Province (western Bulgaria). A survey was conducted in 2024-2025 in 80 sites across Bulgaria. The pest was detected on walnut (*Juglans regia*) in 32 sites along the Black Sea coast, in central and northeastern Bulgaria, and throughout the urban and suburban areas of Sofia City Province. The pest was not detected in southern and northwestern Bulgaria.

The situation of *Garella musculana* in Bulgaria can be described as: **Present, only in some parts of the country.**

Source: Tomov R, Plashkova B, Ciceoi R (2025) New records of *Garella musculana* (Lepidoptera: Nolidae) in Bulgaria. *AgroLife Scientific Journal* 14(2), 223-231.

Pictures: *Garella musculana*. <https://gd.eppo.int/taxon/ERSHMU/photos>

Additional key words: detailed record

Computer codes: ERSHMU, BG

2026/012 First reports of *Dactylopius opuntiae* in Algeria, Libya and Syria

Dactylopius opuntiae (Hemiptera: Dactylopiidae) feeds on *Opuntia* species. In the EPPO region, this scale species is causing severe damage to cultivated and wild *Opuntia* species, such as *Opuntia ficus-indica*. *D. opuntiae* was first recorded in the EPPO region in Spain in 2009 (EPPO RS 2014/100), in Lebanon in 2012 (RS 2017/189), in Israel in 2013, in Morocco in 2014 (RS 2016/152), in Cyprus in 2016 (RS 2017/082) and in Jordan in 2019 (RS 2019/154), and in Tunisia in 2024 (RS 2024/103).

D. opuntiae was recently recorded in the following countries in the Mediterranean Basin:

- Syria: first detected in 2020.
- Algeria: first detected in 2021 in the region of Tlemcen, and in 2024 in the region of Oran. The pest is considered widespread and damaging in the north-west of Algeria.
- Libya: first detected in May 2024 in the western coastal areas and then in other regions.

Source: Abusharya MA, Ashokri HA (2025) Opuntia cochineal scale pest, *Dactylopius opuntiae*: current situation, description, importance, and control methods in countries of the Mediterranean Basin and North Africa. *Acta Biology Forum* 4(2), 15-18. <https://doi.org/10.51470/ABF.2025.4.2.15>

El Bouhissi M, Ghefar M, Sadine SE, Gachi M (2022) Note sur la présence de *Dactylopius opuntiae* (Cockerell, 1896) sur le figuier de Barbarie en Algérie (Hemiptera: Dactylopiidae). *Annales de la Recherche Forestière en Algérie* 12(1), 1-6.

Leblalta A, Meradsi F, Katbeh Bader A, Kenou GB, Warot S, Ris N (2025) First detection of the opuntia cochineal scale *Dactylopius opuntiae* (Cockerell, 1896) (Hemiptera: Dactylopiidae), in Misserghin (Oran), the North-West of Algeria. *Acta Phytopathologica et Entomologica Hungarica* 60(1), 50-58 (abst.)

Pictures: *Dactylopius opuntiae*. <https://gd.eppo.int/taxon/DACLOP/photos>

Additional key words: new record

Computer codes: DACLOP, DZ, LY, SY

2026/013 Eradication of *Leptinotarsa decemlineata* in the United Kingdom

In July 2023, an outbreak of the Colorado beetle, *Leptinotarsa decemlineata* (Coleoptera: Chrysomelidae - EPPO A2 List) was detected in a potato field in South East England (EPPO RS 2023/158). The national contingency plan for the Colorado beetle was implemented. This included intense and regular inspections of potato crops (*Solanum tuberosum*) within the infested area (<1km from the infestation) and in the buffer zone (<5km from the infestation) over a period of 2 years and 3 months. In addition, insecticide treatments were applied to fields in the infested area. A single adult beetle was detected in the infested area in August 2023, but since then there have been no further findings of the pest. Intensive inspections continued through harvest and concluded with a final inspection of the potato crops and accompanying soil from the infested area in September 2025. The outbreak is now eradicated.

The pest status of *Leptinotarsa decemlineata* in the United Kingdom is officially declared as: **Absent, pest eradicated.**

Source: NPPO of the United Kingdom (2025-12).

Pictures: *Leptinotarsa decemlineata*. <https://gd.eppo.int/taxon/LPTNDE/photos>

Additional key words: eradication, absence

Computer codes: LPTNDE, GB

2026/014 New information of *Ceratobasidium* sp. associated with vascular streak dieback of woody ornamentals in the USA

Further research has been carried out on vascular streak dieback (VSD) of woody ornamentals (EPPO Alert List) in the USA (EPPO RS 2024/110). Reliable detection tests have now been developed (PCR and qPCR). Phylogenetic studies showed that the sequences of the VSD agent and *Ceratobasidium theobromae* are closely related but it is now considered that the VSD agent may represent a separate, previously unrecognized species (named ‘*Ceratobasidium* sp. D.P. Rogers’ in the literature and abbreviated as *Csp*). Koch’s postulates have not been completed because of the fastidious nature of *Csp*. However a metagenomic study by Belay *et al.* (2026) concludes that *Csp* is the only causative agent of VSD on ornamentals in the USA.

Liyanapathiranage *et al.* (2025) noted that VSD has been recently recorded for the first time in several US states: Alabama, Maryland, Oregon, Missouri, Pennsylvania, South Carolina. In Virginia, it was recorded mainly in nurseries (58% of the 91 nurseries tested), but also in 8 landscape sites (3 municipal parks, 3 city streets, 1 residence, and 1 forest restoration site).

Since the first reports of VSD (RS 2024/110), the host range of the pathogen has increased from 25 to 46 host genera, including two coniferous hosts. Liyanapathiranage *et al.* (2025) and Bily *et al.* (2026) report the following new host plants: *Abelia x grandiflora*, *Aesculus sylvatica*, *Albizia julibrissin*, *Betula nigra*, *Carpinus betulus*, *Carpinus caroliniana*, *Carya glabra*, *Celtis occidentalis*, *Cephalanthus occidentalis*, *Chionanthus retusus*, *Cladrastis kentukea*, *Cotinus coggygria*, *Ginkgo biloba*, *Heptacodium miconioides*, *Hydrangea arborescens*, *Ilex glabra*, *Juniperus chinensis*, *Lagerstroemia indica*, *Liquidambar styraciflua*, *Magnolia ashei*, *Magnolia grandiflora*, *Magnolia virginiana*, *Osmanthus heterophyllus*, *Osmanthus x fortunei*, *Oxydendrum arboreum*, *Platanus x hispanica*, *Prunus americana*, *Prunus persica*, *Prunus x yedoensis*, *Quercus alba*, *Q. rubra*, *Q. shumardii*, *Rhododendron* hybrids, *Salix japonica*, *Sassafras albidum*, *Spiraea japonica*, *Styrax japonicus*, *Taxodium distichum*, *Tilia americana*, *Ulmus parviflora*, *Viburnum macrocephalum*, and *V. opulus*.

The economic impact of VSD in the USA was investigated by Liyanage *et al.* (2025) based on a survey conducted in 2023 in seven US states. On average, growers reported around \$375,000 worth of losses attributed to VSD in ~25% of container plants.

Source: Belay KH, Abdelrazek S, Kaur S, Mazloom R, Bily D, Gyatso T, Avin FA, Bonkowski J, Liyanapathiranage P, Rodriguez Salamanca L, Heath LS (2026) Genomic insights into *Ceratobasidium* sp. associated with vascular streak dieback of woody ornamentals in the United States using a metagenomic sequencing approach. *Microbiology Spectrum* e02523-25. <https://doi.org/10.1128/spectrum.02523-25>

Bily D, Gyatso T, Avin FA, Bonkowski J, Liyanapathiranage P, Rodriguez Salamanca L, Vinatzer B, Baysal-Gurel F (2026) A *Ceratobasidium* sp. D.P. Rogers associated with vascular streak dieback of woody ornamental plants in Virginia, U.S.A. *Plant Disease* (early view) <https://doi.org/10.1094/PDIS-02-25-0375-RE>

Liyanage KH, Liyanapathiranage P, Baysal-Gurel F (2025) Investigating the economic impact of emerging vascular streak dieback threat to redbuds in the us nursery industry. *HortScience* 60(7), 1244-1250. DOI: [10.21273/HORTSCI18589-25](https://doi.org/10.21273/HORTSCI18589-25)

Liyanapathiranage P, Avin FA, Bonkowski J, Beckerman JL, Munster M, Hadziabdic D, Trigiano RN, Baysal-Gurel F (2025) Vascular streak dieback: A novel threat to redbud and other woody ornamental production in the United States. *Plant Disease* 109(5), 953-970

Pictures: Vascular streak dieback agent. <https://gd.eppo.int/taxon/VSD000/photos>

Additional key words: detailed record, diagnostic, impact

Computer codes: VSD000, CRTBSP, US

2026/015 *Fusarium oxysporum* f. sp. *cubense* Tropical race 4 is officially confirmed in Ecuador

In Ecuador, a suspected outbreak of *Fusarium oxysporum* f. sp. *cubense* Tropical race 4 (EPPO A2 list) was first reported in September 2025 on a 7-hectare farm producing banana in the province of El Oro (canton of Santa Rosa) (EPPO RS 2025/268). In December 2025, the identity of the pest was officially confirmed by laboratory analysis. Phytosanitary measures have been applied. The Ministry of Agriculture, Livestock and Fisheries of Ecuador has declared that the outbreak is contained, under official control and all other areas of Ecuador remain pest free.

The pest status of *Fusarium oxysporum* f. sp. *cubense* Tropical race 4 in Ecuador is officially declared as: **Present: not widely distributed and under official control.**

Source: IPPC website. Official Pest Reports - Ecuador (ECU-06/1 of 2025-12-19). Primera detección de marchitez por *Fusarium oxysporum* f.sp. *cubense* Raza 4 Tropical - FocR4T en la República del Ecuador.
<https://www.ippc.int/en/countries/ecuador/pestreports/2025/12/primera-deteccion-de-marchitez-por-fusarium-oxysporum-fsp-cubense-raza-4-tropical-foc4t-en-la-republica-del-ecuador/>

Internet

- Ministerio de Agricultura, Ganadería y Pesca (2025-12-18) Agrocalidad confirma presencia del hongo Foc R4T y activa medidas de control para proteger la producción bananera.

<https://x.com/AgrocalidadEC/status/2001769732060450838/photo/1>

Pictures: *Fusarium oxysporum* f. sp. *cubense* Tropical race 4.
<https://gd.eppo.int/taxon/FUSAC4/photos>

Additional key words: new record

Computer codes: FUSAC4, EC

2026/016 First record of *Ceratocystis platani* in Croatia

The NPPO of Croatia recently informed the EPPO Secretariat of the first finding of *Ceratocystis platani* (EPPO A2 List) on its territory. During official surveillance activities for 2025, the presence of *C. platani* was reported on two symptomatic London plane (*Platanus x hispanica*) trees in November 2025 in a tree-line of 10 *Platanus* trees in a public site in the city of Novi Vinodolski, Primorje-Gorski Kotar county. The identity of the pest was confirmed by molecular testing. No other host plants are present in the area. The source of the outbreak remains unknown. Official phytosanitary measures, aimed at eradication, have been applied.

The pest status of *Ceratocystis platani* is officially declared as: **Present, under eradication, in specific parts of the Member State, where host crop(s) are grown.**

Source: NPPO of Croatia (2025-12).

Pictures: *Ceratocystis platani*. <https://gd.eppo.int/taxon/CERAFP/photos>

Additional key words: new record

Computer codes: CERAFP, HR

2026/017 First report of watermelon crinkle leaf-associated virus 1 and watermelon crinkle leaf-associated virus 2 in Greece

Watermelon crinkle leaf-associated virus 1 (*Coguvirus citrulli*, WCLaV-1 - EPPO Alert List) and watermelon crinkle leaf-associated virus 2 (*Coguvirus henanense*, WCLaV-2 - EPPO Alert List) are first reported from Greece.

In 2025, WCLaV-1 and WCLaV-2 were first detected by RNA-sequencing of watermelon plants (*Citrullus lanatus*) crops exhibiting mosaic, mottling, yellowing, curling and crinkling symptoms during a survey conducted across Northern, Central and Southern Greece.

To assess the prevalence of both viruses across Greece, 49 cucurbit samples taken during the survey in 2025 (eight from watermelon, 17 from courgette, *Cucurbita pepo*, 12 from cucumber, *Cucumis sativus*, and 12 from melon, *Cucumis melo*) were tested using RT-PCR. WCLaV-1 was detected in all eight watermelon samples from Chania (Crete), Euboea (Central Greece), Kavala (Eastern Macedonia and Thrace), Lakonia (Peloponnese) and Serres (Central Macedonia). WCLaV-2 was detected in six samples from Chania, Euboea, Kavala and Serres. No other cucurbit crop tested positive for the presence of either virus.

The situation of WCLaV-1 in Greece can be described as: **Present, few occurrences**.

The situation of WCLaV-2 in Greece can be described as: **Present, few occurrences**.

Source: Beris D, Kektsidou O, Galeou A, Varveri C (2025) First report of watermelon crinkle leaf-associated virus 1 and 2 infecting watermelon (*Citrullus lanatus*) in Greece. *New Disease Reports* 53(1) e70097 <https://doi.org/10.1002/ndr2.70097>

Pictures: *Coguvirus citrulli*. <https://gd.eppo.int/taxon/WCLAV1/photos>

Coguvirus henanense. <https://gd.eppo.int/taxon/WCLAV2/photos>

Additional key words: new record

Computer codes: WCLAV1, WCLAV2, GR

2026/018 First report of Tomato brown rugose fruit virus in *Brassica napus*

Tomato brown rugose fruit virus (*Tobamovirus fructirugosum*, ToBRFV - EPPO A2 List) is a virus that primarily affects solanaceous plants, in particular tomato (*Solanum lycopersicum*) and capsicum (*Capsicum* sp.). Inoculation experiments have shown it can infect *Nicotiana* sp. and that wild weeds can be infected and may act as reservoirs. However, recently, ToBRFV has been found to naturally infect non-solanaceous plants, including chrysanthemum (*Chrysanthemum indicum*, Asteraceae) and mile-a-minute (*Persicaria perfoliata*, Polygonaceae) (EPPO RS 2025/206, RS 2025/252).

In October 2024, ToBRFV was identified as the causative agent of virus-like symptoms including leaf wrinkles and interveinal chlorosis in rapeseed plants (*Brassica napus*) growing in a field in Shandong Province, China. This is the first report of ToBRFV natural infection in *B. napus*. The identity of the pathogen was confirmed by molecular testing and Koch's postulates were confirmed. In May 2024, in the same field, tomato plants showing mild leaf

curling and severe fruit deformation had been confirmed to be infected with ToBRFV by molecular testing. The source of infection for the *B. napus* plants remains unclear, however the authors suggest that crop rotation without effective field sanitation may facilitate transmission across-plant families. *B. napus* is widely planted in China and often rotated with tomato.

Source: Lu M, Lu J, Chen J, Ding T, Cao Y, Liang Y, Rao S, Li J, Song X (2025) First field report of tomato brown rugose fruit virus (ToBRFV) naturally infecting rapeseed (*Brassica napus*) in China. *Plant Disease* (early view) <https://doi.org/10.1094/PDIS-07-25-1532-PDN>

Pictures: *Tobamovirus fructirugosum*. <https://gd.eppo.int/taxon/TOBRFV/photos>

Additional key words: new host plant

Computer codes: TOBRFV, CN

2026/019 Eradication of American plum line pattern virus in the Netherlands

The NPPO of the Netherlands informed the EPPO Secretariat of the following update in pest status:

- American plum line pattern virus (*Ilarvirus APLV*, APLV - EPPO A1 List) was first recorded in 2024 in two reference collections (EPPO RS 2024/134). These outbreaks have been eradicated.

The pest status of American plum line pattern virus in the Netherlands is officially declared as: **Absent: pest eradicated**.

Source: NPPO of the Netherlands (2025-06).

Pictures: *Ilarvirus APLV*. <https://gd.eppo.int/taxon/APLV0/photos>

Additional key words: eradication, absence

Computer codes: APLV0, NL

2026/020 First report of *Ambrosia trifida* in Montenegro

Ambrosia trifida (Asteraceae - EPPO A2 List) is native to North America and it is considered to be a weed in many US states. It was introduced into the EPPO region at the end of the 19th century, and its range has expanded since the mid-1900s. Floristic surveys were conducted in Montenegro in 2019, 2020, and 2024 in areas covering the Zeta River, the Morača River, and Lake Skadar. The Morača and Zeta rivers are the main rivers within the Lake Skadar basin. *A. trifida* was identified in the Sub-Mediterranean subregion of Montenegro along rivers, roadsides, and wet meadows. The populations consisted of between a couple of individuals per site to over 200 individuals scattered over an area of 2 square kilometres. *A. trifida* can be considered to be naturalised at three of the known locations, and the population of 200 individuals as naturalised and invasive. Further monitoring of the populations is required and control measures should be implemented to prevent *A. trifida* becoming invasive throughout Montenegro.

Source: Hadžiablahović S, Hadžiablahović H (2024) The first record of non-native *Ambrosia trifida* L. (asteraceae) in Montenegro. *Section of Natural, Mathematical and Biotechnical Sciences* 44, DOI: 10.20903/masa/nmbsci.2023.44.21

Pictures: *Ambrosia trifida*. <https://gd.eppo.int/taxon/AMBTR/photos>

Additional key words: new record, invasive alien plant

Computer codes: AMBTR, ME

2026/021 First report of *Euphorbia hypericifolia* in Tunisia

Euphorbia hypericifolia (Euphorbiaceae) is native to the Americas. It is reported to be invasive in the Pacific Islands and Hawaii (USA). It is also recorded as an alien species in Singapore and Taiwan. *E. hypericifolia* is reported to be a major weed in sugarcane and soybean crops in Peru and a weed in coffee crops in Puerto Rico. In Guam, it has been reported to have negative impacts on biodiversity and ecosystems. In Tunisia, *E. hypericifolia* is considered naturalized. It is found in the northeast of the country in areas around nurseries and ruderal habitats including railway stations. *E. hypericifolia* is reported from the following governorates: Bizerta (in northeastern Tunisia), Tabarka (in northwestern Tunisia, and Monastir (in central Tunisia). The introduction of *E. hypericifolia* into Tunisia is thought to have been unintentional, most likely as a contaminant of ornamental potted plants. Once introduced, *E. hypericifolia* can spread rapidly along watercourses via seed. It has a fast growth rate, reproductive capacity, and adaptation potential, enabling it to become naturalised in new areas. Populations of *E. hypericifolia* in North Africa should be controlled to prevent further spread and associated negative impacts.

Source: El Mokni R (2025) Studies on the genus *Euphorbia* (Euphorbiaceae) in North Africa: First records of the invasive weed *Euphorbia hypericifolia* (E. subsect. Hypericifoliae Boiss.) in Tunisia. *Flora Mediterranea* 35, 127-133. <https://doi.org/10.7320/FLMedit35.127>

Additional key words: new record, invasive alien plant

Computer codes: EPHHY, TN

2026/022 First report of *Hydrocharis laevigata* in France

Hydrocharis laevigata (Hydrocharitaceae, synonym *Limnobium laevigatum*) is a floating aquatic plant native to South and Central America. It can invade freshwater habitats

including shallow ponds, lakes, dams, reservoirs, and slow-moving rivers. It has the potential to outcompete native aquatic plant species and change the chemical composition of the water body. In the EPPO region, it has been reported as transient in Belgium, Hungary, Poland and Spain (EPPO RS 2021/114, RS 2021/202). In France, *H. laevigata* was first observed in 2022 in a reservoir on the river Vilaine (Ille-et-Vilaine département, Bretagne region). In 2023, it was found at a further four sites on the banks of the Garonne and Lot rivers (Lot-et-Garonne and Gironde départements, Nouvelle Aquitaine region). Floating mats of the plant have been observed. Along riverbanks, *H. laevigata* has been identified as early as April in the growing season. Up to 100 individuals were observed on the river Lot.

A risk assessment has been produced for *Hydrocharis laevigata* for the European Union and the species will be considered for listing under the Invasive Alien Species Regulation (Regulation (EU) 1143/2014).

Source: Dutarte A (2026) Limnobium laevigatum s'installerait-il dans l'hexagone ? [Is *Limnobium laevigatum* establishing itself in France?]. Invasive Alien Species Resource Centre. Available at: <https://especes-exotiques-envahissantes.fr/limnobium-laevigatum-installer-hexagone/>

Kudrnovsky H, Williams M (2024) Draft risk assessment for *Hydrocharis laevigata*. Available at <https://circabc.europa.eu/ui/group/98665af0-7dfa-448c-8bf4-e1e086b50d2c/library/25d41f8f-ea24-48bc-9c6e-2955ab911815/details>

Additional key words: new record, invasive alien plant

Computer codes: LIMST, FR

2026/023 Spread potential of *Phytolacca americana* in Poland

Phytolacca americana (Phytolaccaceae) is native to North America and has become widespread in the EPPO region. It is used as a medicinal plant and can be eaten after it is cooked. Within the EPPO region, the species occurs in clear-cut areas, along hedgerows and wasteland (e.g. in Switzerland), along field margins, canals and coastal areas. The plant is spread mainly by natural means, including by birds feeding and spreading the seeds or by rhizome movement as a result of habitat disturbance.

The spread of *P. americana* was estimated in the Niemodlin Forest in south-western Poland in 2023 and 2024, using field-collected data and modelling. Surveys were conducted to estimate the extent of the invasion, and other factors (such as plant community structure and soil conditions) were estimated or classified based on current databases. Using data from a wider area, the most important variables for the potential distribution of *P. americana* are: (1) dominant tree species in the area; (2) extent of environmental degradation; (3) soil type; (4) land use; (5) forest type; (6) soil moisture level; and (7) age of dominant tree species. All of these variables were included in the model along with climatic data. The results showed that 105 square kilometres of the analysed area is suitable for *P. americana*. To prevent further spread, the following four actions should be taken: (1) eradication of populations in known locations; (2) monitoring spread and rapid eradication of new populations; (3) awareness raising with key stakeholders; and (4) prohibiting the sale of the species for ornamental purposes.

Source: Tokarska-Guzik B, Dajdok Z, Stefaniak J (2025) The spread of *Phytolacca americana* (Phytolaccaceae) in the Niemodlin Forest as an example of invasive potential in

southern Poland. *BioInvasions Records* 14(4), 769-788,
<https://doi.org/10.3391/bir.2025.14.4.03>

Pictures: *Phytolacca americana*. <https://gd.eppo.int/taxon/PHTAM/photos>

Additional key words: invasive alien plant

Computer codes: PHTAM, PL

2026/024 Potential for establishment of *Araujia sericifera* in the EPPO region

Araujia sericifera (Apocynaceae) is a woody evergreen vine native to South America. The plant was introduced to Europe in the 19th century as an ornamental and textile plant. Commonly known as the “Cruel plant”, it can trap and kill moths, bees, and butterflies via floral secretions. In the EPPO region, in Mediterranean ecosystems, it can have a negative impact on biodiversity by smothering native plant species, and in agricultural systems it can smother crops like citrus and grape. Currently, in the EPPO region, the species is reported from Algeria, France, Georgia, Greece, Israel, Italy, Portugal, Spain, and Türkiye. To assess the potential for further spread and establishment, current data on occurrence were obtained from the Global Biodiversity Information Facility (GBIF) database. These data, along with climatic variables, were used in a model to predict current and future distribution. The results of the model show that under current climatic conditions, areas with high suitability are concentrated in Western Europe, particularly in Portugal and southern France, where there are extensive areas with optimal conditions. High suitability is predicted in Spain, along the northeastern border with France, as well as in Italy and the Mediterranean islands, and in North Africa along the coasts of Algeria and Tunisia. Further east, high suitability is predicted along the coastal zones of Greece, Türkiye, and the western Caspian Sea coast of Georgia. Strong suitability is projected along the Caspian coast of Azerbaijan, although there are currently no confirmed occurrences of the species. Future climate projections indicate a northward shift in areas of potential suitability, resulting in countries like the Netherlands, Germany and the United Kingdom becoming suitable or marginally suitable. Suitability is also predicted to decrease in the Mediterranean region due to increased temperatures and reduced moisture availability.

Source: Oveisi M, Sohrabi S, Piri R, Müller-Schärer H (2025) Observed distribution and predicted further spread of *Araujia sericifera* from Europe to the Southern Caspian Sea coast. *Weed Research* 65, e70041 <https://doi.org/10.1111/wre.70041>

Pictures: *Araujia sericifera*. <https://gd.eppo.int/taxon/AJASE/photos>

Additional key words: invasive alien plant

Computer codes: AJASE